Как найти 1 корень в квадратном уравнении. Как решать квадратные уравнения

13.10.2019

Неполное квадратное уравнение отличаются от классических (полных) уравнений тем, что его множители или свободный член равны нулю. Графиком таких функций являются параболы. В зависимости от общего вида их делят на 3 группы. Принципы решения для всех типов уравнений одинаковы.

Ничего сложного в определении типа неполного многочлена нет. Рассмотреть основные отличия лучше всего на наглядных примерах:

  1. Если b = 0, то уравнение имеет вид ax 2 + c = 0.
  2. Если c = 0, то решать следует выражение ax 2 + bx = 0.
  3. Если b = 0 и c = 0, то многочлен превращается в равенство типа ax 2 = 0.

Последний случай является скорее теоретической возможностью и никогда не встречается в заданиях для проверки знаний, так как единственно верное значение переменной x в выражении – это ноль. В дальнейшем будет рассмотрены способы и примеры решения неполных квадратных уравнений 1) и 2) видов.

Общий алгоритм поиска переменных и примеры с решением

Не зависимо от разновидности уравнения алгоритм решения сводится к следующим шагам:

  1. Привести выражение к удобному для поиска корней виду.
  2. Произвести вычисления.
  3. Записать ответ.

Решать неполные уравнения проще всего, разложив на множители левую часть и оставив ноль в правой. Таким образом, формула неполного квадратного уравнения для поиска корней сводится к вычислению значения x для каждого из множителей.

Научиться способам решения можно только лишь на практике, поэтому рассмотрим конкретный пример нахождения корней неполного уравнения:

Как видно, в данном случае b = 0. Разложим левую часть на множители и получим выражение:

4(x – 0,5) ⋅ (x + 0,5) = 0.

Очевидно, что произведение равно нулю, когда хотя бы один из множителей равен нулю. Подобным требованиям отвечают значения переменной x1 = 0,5 и (или) x2 = -0,5.

Для того, чтобы легко и быстро справляться с задачей разложения квадратного трехчлена на множители, следует запомнить следующую формулу:

Если в выражении отсутствует свободный член, задача многократно упрощается. Достаточно будет всего лишь найти и вынести за скобки общий знаменатель. Для наглядности рассмотрим пример, как решать неполные квадратные уравнения вида ax2 + bx = 0.

Вынесем переменную x за скобки и получим следующее выражение:

x ⋅ (x + 3) = 0.

Руководствуясь логикой, приходим к выводу, что x1 = 0, а x2 = -3.

Традиционный способ решения и неполные квадратные уравнения

Что же будет, если применить формулу дискриминанта и попытаться найти корни многочлена, при коэффициентах равных нулю? Возьмем пример из сборника типовых заданий для ЕГЭ по математики 2017 года, решим его с помощью стандартных формул и методом разложения на множители.

7x 2 – 3x = 0.

Рассчитаем значение дискриминант: D = (-3)2 – 4 ⋅ (-7) ⋅ 0 = 9. Получается, многочлен имеет два корня:

Теперь, решим уравнение разложением на множители и сравним результаты.

X ⋅ (7x + 3) = 0,

2) 7x + 3 = 0,
7x = -3,
x = -.

Как видно, оба метода дают одинаковый результат, но решить уравнение вторым способ получилось гораздо проще и быстрее.

Теорема Виета

А что же делать с полюбившейся теоремой Виета? Можно ли применять данный метод при неполном трехчлене? Попробуем разобраться в аспектах приведения неполных уравнений к классическому виду ax2 + bx + c = 0.

На самом деле применять теорему Виета в данном случае возможно. Необходимо лишь привести выражение к общему виду, заменив недостающие члены нулем.

Например, при b = 0 и a = 1, дабы исключить вероятность путаницы следует записать задание в виде: ax2 + 0 + c = 0. Тогда отношение суммы и произведения корней и множителей многочлена можно выразить следующим образом:

Теоретические выкладки помогают ознакомиться с сутью вопроса, и всегда требуют отработки навыка при решении конкретных задач. Снова обратимся к справочнику типовых заданий для ЕГЭ и найдем подходящий пример:

Запишем выражение в удобном для применения теоремы Виета виде:

x 2 + 0 – 16 = 0.

Следующим шагом составим систему условий:

Очевидно, что корнями квадратного многочлена будут x 1 = 4 и x 2 = -4.

Теперь, потренируемся приводить уравнение к общему виду. Возьмем следующий пример: 1/4× x 2 – 1 = 0

Для того, чтобы применить к выражению теорему Виета необходимо избавиться от дроби. Перемножим левую и правую части на 4, и посмотрим на результат: x2– 4 = 0. Полученное равенство готово для решения теоремой Виета, но гораздо проще и быстрее получить ответ просто перенеся с = 4 в правую часть уравнения: x2 = 4.

Подводя итог, следует сказать, что лучшим способом решения неполных уравнений является разложения на множители, является самым простым и быстрым методом. При возникновении затруднений в процессе поиска корней можно обратиться к традиционному методу нахождения корней через дискриминант.

», то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

Что называют квадратным уравнением

Важно!

Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

Если максимальная степень, в которой стоит неизвестное — «2 », значит, перед вами квадратное уравнение.

Примеры квадратных уравнений

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25x = 0
  • x 2 − 8 = 0

Важно! Общий вид квадратного уравнения выглядит так:

A x 2 + b x + c = 0

«a », «b » и «c » — заданные числа.
  • «a » — первый или старший коэффициент;
  • «b » — второй коэффициент;
  • «c » — свободный член.

Чтобы найти «a », «b » и «c » нужно сравнить свое уравнение с общим видом квадратного уравнения «ax 2 + bx + c = 0 ».

Давайте потренируемся определять коэффициенты «a », «b » и «c » в квадратных уравнениях.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Уравнение Коэффициенты
  • a = 5
  • b = −14
  • с = 17
  • a = −7
  • b = −13
  • с = 8
1
3
= 0
  • a = −1
  • b = 1
  • с =
    1
    3
x 2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • с = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • с = −8

Как решать квадратные уравнения

В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней .

Запомните!

Чтобы решить квадратное уравнение нужно:

  • привести квадратное уравнение к общему виду «ax 2 + bx + c = 0 ». То есть в правой части должен остаться только «0 »;
  • использовать формулу для корней:

Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

X 2 − 3x − 4 = 0


Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду «ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения .

Определим коэффициенты «a », «b » и «c » для этого уравнения.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

С её помощью решается любое квадратное уравнение.

В формуле «x 1;2 = » часто заменяют подкоренное выражение
«b 2 − 4ac » на букву «D » и называют дискриминантом . Более подробно понятие дискриминанта рассматривается в уроке «Что такое дискриминант ».

Рассмотрим другой пример квадратного уравнения.

x 2 + 9 + x = 7x

В данном виде определить коэффициенты «a », «b » и «c » довольно сложно. Давайте вначале приведем уравнение к общему виду «ax 2 + bx + c = 0 ».

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Теперь можно использовать формулу для корней.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Ответ: x = 3

Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.

5х (х - 4) = 0

5 х = 0 или х - 4 = 0

х = ± √ 25/4

Научившись решать уравнения первой степени, безусловно, хочется работать с другими, в частности, с уравнениями второй степени, которые по-другому называются квадратными.

Квадратные уравнения - это уравнения типа ах ² + bx + c = 0, где переменной является х, числами будут - а, b, с, где а не равняется нулю.

Если в квадратном уравнении один или другой коэффициент (с или b) будет равняться нулю, то это уравнение будет относиться к неполному квадратному уравнению.

Как решить неполное квадратное уравнение, если ученики до сих пор умели решать только уравнения первой степени? Рассмотрим неполные квадратные уравнения разных видов и несложные способы их решения.

а) Если коэффициент с будет равен 0, а коэффициент b не будет равен нулю, то ах ² + bх + 0 = 0 сводится к уравнению вида ах ² + bх = 0.

Чтобы решить такое уравнение, нужно знать формулу решения неполного квадратного уравнения, которая заключается в том, чтобы левую часть его разложить на множители и позже использовать условие равенства произведения нулю.

Например, 5х ² - 20х = 0. Раскладываем левую часть уравнения на множители, при этом совершая обычную математическую операцию: вынос общего множителя за скобки

5х (х - 4) = 0

Используем условие, гласящее, что произведения равны нулю.

5 х = 0 или х - 4 = 0

Ответом будет: первый корень - 0; второй корень - 4.

б) Если b = 0, а свободный член не равен нулю, то уравнение ах ² + 0х + с = 0 сводится к уравнению вида ах ² + с = 0. Решают уравнения двумя способами: а) раскладывая многочлен уравнения в левой части на множители; б) используя свойства арифметического квадратного корня. Такое уравнение решается одним из методов, например:

х = ± √ 25/4

х = ± 5/2. Ответом будет: первый корень равен 5/2; второй корень равен - 5/2.

в) Если b будет равен 0 и с будет равен 0, то ах ² + 0 + 0 = 0 сводится к уравнению вида ах ² = 0. В таком уравнении x будет равен 0.

Как видите, неполные квадратные уравнения могут иметь не более двух корней.

Задачи на квадратное уравнение изучаются и в школьной программе и в ВУЗах. Под ними понимают уравнения вида a*x^2 + b*x + c = 0 ,где x - переменная, a,b,c – константы; a<>0 . Задача состоит в отыскании корней уравнения.

Геометрический смысл квадратного уравнения

Графиком функции, которая представлена квадратным уравнением является парабола. Решения (корни) квадратного уравнения - это точки пересечения параболы с осью абсцисс (х) . Из этого следует, что есть три возможных случая:
1) парабола не имеет точек пересечения с осью абсцисс. Это означает, что она находится в верхней плоскости с ветками вверх или нижней с ветками вниз. В таких случаях квадратное уравнение не имеет действительных корней (имеет два комплексных корня).

2) парабола имеет одну точку пересечения с осью Ох . Такую точку называют вершиной параболы, а квадратное уравнение в ней приобретает свое минимальное или максимальное значение. В этом случае квадратное уравнение имеет один действительный корень (или два одинаковых корня).

3) Последний случай на практике интересный больше - существует две точки пересечения параболы с осью абсцисс. Это означает, что существует два действительных корня уравнения.

На основе анализа коэффициентов при степенях переменных можно сделать интересные выводы о размещении параболы.

1) Если коэффициент а больше нуля то парабола направлена ветками вверх, если отрицательный - ветки параболы направлены вниз.

2) Если коэффициент b больше нуля то вершина параболы лежит в левой полуплоскости, если принимает отрицательное значение - то в правой.

Вывод формулы для решения квадратного уравнения

Перенесем константу с квадратного уравнения

за знак равенства, получим выражение

Умножим обе части на 4а

Чтобы получить слева полный квадрат добавим в обеих частях b^2 и осуществим преобразование

Отсюда находим

Формула дискриминанта и корней квадратного уравнения

Дискриминантом называют значение подкоренного выраженияЕсли он положительный то уравнение имеет два действительных корня, вычисляемые по формулеПри нулевом дискриминант квадратное уравнение имеет одно решение (два совпадающих корня), которые легко получить из приведенной выше формулы при D=0 При отрицательном дискриминант уравнения действительных корней нет. Однако исують решения квадратного уравнения в комплексной плоскости, и их значение вычисляют по формуле

Теорема Виета

Рассмотрим два корня квадратного уравнения и построим на их основе квадратное уравнение.С записи легко следует сама теорема Виета: если имеем квадратное уравнение видато сумма его корней равна коэффициенту p , взятому с противоположным знаком, а произведение корней уравнения равен свободному слагаемому q . Формульная запись вышесказанного будет иметь видЕсли в классическом уравнении константа а отлична от нуля, то нужно разделить на нее все уравнение, а затем применять теорему Виета.

Расписание квадратного уравнения на множители

Пусть поставлена задача: разложить квадратное уравнение на множители. Для его выполнения сначала решаем уравнение (находим корни). Далее, найденные корни подставляем в формулу разложения квадратного уравненияНа этом задача будет разрешен.

Задачи на квадратное уравнение

Задача 1. Найти корни квадратного уравнения

x^2-26x+120=0 .

Решение: Запишем коэффициенты и подставим в формулу дискриминанта

Корень из данного значения равен 14 , его легко найти с калькулятором, или запомнить при частом использовании, однако для удобства, в конце статьи я Вам дам список квадратов чисел, которые часто могут встречаться при подобных задачах.
Найденное значение подставляем в формулу корней

и получаем

Задача 2. Решить уравнение

2x 2 +x-3=0.

Решение: Имеем полное квадратное уравнение, выписываем коэффициенты и находим дискриминант


По известным формулам находим корни квадратного уравнения

Задача 3. Решить уравнение

9x 2 -12x+4=0.

Решение: Имеем полное квадратное уравнение. Определяем дискриминант

Получили случай когда корни совпадают. Находим значения корней по формуле

Задача 4. Решить уравнение

x^2+x-6=0 .

Решение: В случаях когда есть малые коэффициенты при х целесообразно применять теорему Виета. По ее условию получаем два уравнения

С второго условия получаем, что произведение должно быть равно -6 . Это означает, что один из корней отрицателен. Имеем следующую возможную пару решений{-3;2}, {3;-2} . С учетом первого условия вторую пару решений отвергаем.
Корни уравнения равны

Задача 5. Найти длины сторон прямоугольника, если его периметр 18 см, а площадь 77 см 2 .

Решение: Половина периметра прямоугольника равна сумме соседних сторон. Обозначим х – большую сторону, тогда 18-x меньшая его сторона. Площадь прямоугольника равна произведению этих длин:
х(18-х)=77;
или
х 2 -18х+77=0.
Найдем дискриминант уравнения

Вычисляем корни уравнения

Если х=11 , то 18-х=7 , наоборот тоже справедливо (если х=7 , то 21-х=9 ).

Задача 6. Разложить квадратное 10x 2 -11x+3=0 уравнения на множители.

Решение: Вычислим корни уравнения, для этого находим дискриминант

Подставляем найденное значение в формулу корней и вычисляем

Применяем формулу разложения квадратного уравнения по корнями

Раскрыв скобки получим тождество.

Квадратное уравнение с параметром

Пример 1. При каких значениях параметра а , уравнение (а-3)х 2 +(3-а)х-1/4=0 имеет один корень?

Решение: Прямой подстановкой значения а=3 видим, что оно не имеет решения. Далее воспользуемся тем, что при нулевом дискриминанте уравнение имеет один корень кратности 2 . Выпишем дискриминант

упростим его и приравняем к нулю

Получили квадратное уравнение относительно параметра а , решение которого легко получить по теореме Виета. Сумма корней равна 7 , а их произведение 12 . Простым перебором устанавливаем, что числа 3,4 будут корнями уравнения. Поскольку решение а=3 мы уже отвергли в начале вычислений, то единственным правильным будет - а=4 . Таким образом, при а=4 уравнение имеет один корень.

Пример 2. При каких значениях параметра а , уравнение а(а+3)х^2+(2а+6)х-3а-9=0 имеет более одного корня?

Решение: Рассмотрим сначала особые точки, ими будут значения а=0 и а=-3 . При а=0 уравнение упростится до вида 6х-9=0; х=3/2 и будет один корень. При а= -3 получим тождество 0=0 .
Вычислим дискриминант

и найдем значения а при котором оно положительно

С первого условия получим а>3 . Для второго находим дискриминант и корни уравнения


Определим промежутки где функция принимает положительные значения. Подстановкой точки а=0 получим 3>0 . Итак, за пределами промежутка (-3;1/3) функция отрицательная. Не стоит забывать о точке а=0 , которую следует исключить, поскольку в ней исходное уравнение имеет один корень.
В результате получим два интервала, которые удовлетворяют условию задачи

Подобных задач на практике будет много, постарайтесь разобраться с заданиями самостоятельно и не забывайте учитывать условия, которые взаимоисключают друг друга. Хорошо изучите формулы для решения квадратных уравнений, они довольна часто нужны при вычислениях в разных задачах и науках.

Превращение полного квадратного уравнения в неполное выглядит так (для случая \(b=0\)):

Для случаев, когда \(с=0\) или когда оба коэффициента равны нулю - всё аналогично.

Обратите внимание, что про равенство нулю \(a\) речи не идет, оно равно нулю быть не может, так как в этом случае превратиться в :

Решение неполных квадратных уравнений.

Прежде всего, надо понимать, что неполное квадратное уравнение все-таки является , поэтому может быть решено также как и обычное квадратное (через ). Для этого просто дописываем недостающий компонент уравнения с нулевым коэффициентом.

Пример : Найдите корни уравнения \(3x^2-27=0\)
Решение :

У нас неполное квадратное уравнение с коэффициентом \(b=0\). То есть, мы можем записать уравнение в следующем виде:

\(3x^2+0\cdot x-27=0\)

Фактически здесь то же самое уравнение, что и в начале, но теперь его можно решать как обычное квадратное. Сначала выписываем коэффициенты.

\(a=3;\) \(b=0;\) \(c=-27;\)

Вычислим дискриминант по формуле \(D=b^2-4ac\)

\(D=0^2-4\cdot3\cdot(-27)=\)
\(=0+324=324\)

Найдем корни уравнения по формулам
\(x_{1}=\)\(\frac{-b+\sqrt{D}}{2a}\) и \(x_{2}=\)\(\frac{-b-\sqrt{D}}{2a}\)

\(x_{1}=\)\(\frac{-0+\sqrt{324}}{2\cdot3}\) \(=\)\(\frac{18}{6}\) \(=3\)

\(x_{2}=\)\(\frac{-0-\sqrt{324}}{2\cdot3}\) \(=\)\(\frac{-18}{6}\) \(=-3\)


Записываем ответ

Ответ : \(x_{1}=3\); \(x_{2}=-3\)


Пример : Найдите корни уравнения \(-x^2+x=0\)
Решение :

Опять неполное квадратное уравнение, но теперь нулю равен коэффициент \(c\). Записываем уравнение как полное.