Номенклатура жиров химия. Изомеры жирных кислот. Жиры и масла

15.06.2021

Номенклатура и изомерия

Среди функциональных производных карбоновых кислот особое место занимают сложные эфиры – соединения, представляющие карбоновые кислоты, у которых атом водорода в карбоксильной группе заменен углеводородным радикалом. Общая формула сложных эфиров

Молекула сложного эфира состоит из остатка кисло­ты (1) и остатка спирта (2).

Названия сложных эфиров произ­водят от названия углеводородного радикала и названия кислоты, в котором вместо окончания «-овая кислота» используют суффикс «ат», например:

Часто сложные эфиры называют по тем остаткам кислот и спир­тов, из которых они состоят. Так, рассмотренные выше сложные эфиры могут быть названы: уксусноэтиловый эфир, кротоновометиловый эфир.

Для сложных эфиров характерны три вида изомерии: 1. Изомерия углеродной цепи, начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку – с пропилового спирта, например:

2. Изомерия положения сложноэфирной группировки – СО–О–. Этот вид изомерии начинается сосложных эфиров, в молекулах ко­торых содержится не менее 4 атомов углерода, например:

3. Межклассовая изомерия, например:

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и цис-транс- изомерия.

Физические свойства

Сложные эфиры низ­ших карбоновых кислот и спиртов представляют собой летучие, ма­лорастворимые или практически нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, HCOOC 2 H 5 – запах рома, HCOOC 5 H 11 – вишни, HCOOC 5 H 11 -изо – сливы, СН 3 СООС 5 Н 11 -изо – груши, С 3 Н 7 СООС 2 Н 5 – абрикоса, С 3 Н 7 СООС 4 Н 9 – ананаса, С 4 Н 9 СООС 5 Н 11 – яблок и т.д

Сложные эфиры имеют, как правило, более низкую температуру кипения, чем соответствующие им кислоты. Например, стеариновая кислота кипит при 232 °С, а метилстеарат – при 215°С. Объясняется это тем, что между молеку­лами сложных эфиров отсутствуют водородные связи.

Сложные эфиры высших жирных кислот и спиртов – воскооб­разные вещества, не имеют запаха, в воде не растворимы, хорошо растворимы в органических растворителях. Например, пчелиный воск представляет собой в основном мирицилпальмитат (С 15 Н 31 COOC 31 Н 63)

Химические свойства

1. Реакция гидролиза или омыления.

Реакция этерификации является обратимой, поэтому в присутствии кислот будет проте­кать обратная реакция, называемая гидролизом, в результате кото­рой образуются исходные жирные кислоты и спирт:

Реакция гидролиза ускоряется под действием щелочей; в этом случае гидролиз необратим:

так как получающаяся карбоновая кислота со щелочью образует соль:

2. Реакция присоединения.

Сложные эфиры, имеющие в своем составе непредельную кисло­ту или спирт, способны к реакциям присоединения. Например, при каталитическом гидрировании они присоединяют водород.

3. Реакция восстановления.

Восстановление сложных эфиров водородом приводит к образо­ванию двух спиртов:

4. Реакция образования амидов.

Под действием аммиака сложные эфиры превращаются в амиды кислот и спирты:

Механизм протекания реакции этерификации. Рассмотрим в качестве примера получение этилового эфи­ра бензойной кислоты:

Каталитическое действие серной кислоты состоит в том, что она активирует молекулу карбоновой кислоты. Бензойная кислота протонируется по атому кислорода карбонильной группы (атом ки­слорода имеет неподеленную пару электронов, за счет которой при­соединяется протон). Протонирование приводит к превращению частичного положительного заряда на атоме углерода карбоксиль­ной группы в полный, к увеличению его электрофильности. Резо­нансные структуры (в квадратных скобках) показывают делокализацию положительного заряда в образовавшемся катионе. Молекула спирта за счет своей неподеленной пары электронов присоединяется к активированной молекуле кислоты. Протон от остатка спирта пе­ремещается к гидроксильной группе, которая при этом превращает­ся в «хорошо уходящую» группу Н 2 О. После этого отщепляется молекула воды с одновременным выбросом протона (возврат ката­лизатора).

Этерификация обратимый процесс. Прямая реакция – обра­зование сложного эфира, обратная – его кислотный гидролиз. Для того чтобы сдвинуть равновесие вправо, необходимо удалять из ре­акционной смеси воду.

Жиры и масла

Среди сложных эфиров особое место занимают природные эфиры – жиры и масла, которые образованы трехатомным спиртом глицерином и высшими жирными кислотами с неразветвленной уг­леродной цепью, содержащими четное число углеродных атомов. Жиры входят в состав растительных и животных организмов и иг­рают важную биологическую роль. Они служат одним из источни­ков энергии живых организмов, которая выделяется при окислении жиров. Общая формула жиров:

где R", R"", R""" - углеводородные радикалы.

Жиры бывают «простыми» и «смешанными». В состав простых жиров входят остатки одинаковых кислот (т.е. R" = R"" = R"""), в со­став смешанных – различных.

В жирах наиболее часто встречаются следующие жирные кисло­ты:

Алкановые кислоты

Масляная кислота СН 3 –(СН 2) 2 –СООН

Капроновая кислота СН 3 –(СН 2) 4 –СООН

Каприловая кислота СН 3 –(СН 2) 6 –СООН

Каприновая кислота СН 3 –(СН 2) 8 –СООН

Лауриновая кислота СН 3 –(СН 2) 10 –СООН

Миристиновая кислота СН 3 –(СН 2) 12 –СООН

Пальмитинования кислота СН 3 –(СН 2) 14 –СООН

Стеариновая кислота СН 3 –(СН 2) 16 –СООН

Арахиновая кислота СН 3 –(СН 2) 18 –СООН

Алкеновые кислоты

Олеиновая кислота

Алкадиеновые кислоты

Линолевая кислота

Алкатриеновые кислоты

Линоленовая кислота

Природные жиры представляют собой смесь простых и смешан­ных эфиров.

По агрегатному состоянию при комнат­ной температуре жиры делятся на жидкие и твердые. Агрегатное со­стояние жиров определяется природой жирных кислот. Твердые жи­ры, как правило, образованы предельными кислотами, жидкие жиры (их часто называют маслами )– непредельными. Температура плав­ления жира тем выше, чем больше в нем содержание предельных кислот. Она также зависит от длины углеводородной цепи жирной кислоты; температура плавления растет с ростом длины углеводо­родного радикала.

В состав животных жиров преимущественно входят насыщенные кислоты, в состав растительных – ненасыщенные. Поэтому живот­ные жиры, как правило, твердые вещества, а растительные – чаще всего жидкие (растительные масла).

Жиры растворимы в неполярных органических растворителях (углеводороды, их галогенпроизводные, диэтиловый эфир) и нерас­творимы в воде.

1. Гидролиз, или омыление жиров про­исходит под действием воды (обратимо) или щелочей (необратимо):

При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами.

2. Гидрогенизацией жиров называют процесс присоединения во­дорода к остаткам непредельных кислот, входящих в состав жиров. При этом остатки непредельных кислот переходят в остатки пре­дельных кислот, и жиры из жидких превращаются в твердые:

3. Жидкие жиры (масла, содержащие олеиновую, линолевую и линоленовую кислоты), взаимодействуя с кислородом воздуха, спо­собны образовывать твердые пленки – «сшитые полимеры». Такие масла называют «высыхающими». Они служат основой для нату­ральной олифы и красок.

4. При длительном хранении под действием влаги, кислорода воздуха, света и тепла жиры приобретают неприятный запах и вкус. Этот процесс называется «прогорканием». Неприятные запах и вкус обусловлены появлением в жирах продуктов их превращения: свободных жирных кислот, гидроксикислот, альдегидов и кетонов.

Жиры играют важную роль в жизни человека и животных. Они являются одним из основных источников энергии для живых орга­низмов.

Жиры широко используются в пищевой, косметической и фар­мацевтической промышленности.

Глава 31. УГЛЕВОДЫ (САХАРА)

Углеводы – это природные органические соединения, имеющие общую формулу С m (Н 2 О) n (т, п > 3). Углеводы подразделяют на три большие группы: моносахариды, олигосахариды и полисахариды.

Моносахаридами называют такие углеводы, которые не могут гидролизоваться с образованием более простых углеводов.

Олигосахариды – это продукты конденсации небольшого числа моносахаридов, например сахароза – С 12 Н 22 О 11 . Полисахариды (крахмал, целлюлоза) образованы большим числом молекул моно­сахаридов.

Моносахариды

Номенклатура и изомерия

Про­стейший моносахарид – глицериновый альдегид, С 3 Н 6 О 3:

Остальные моносахариды по числу атомов углерода подразделяют на тетрозы (С 4 Н 8 О 4), пентозы (С 5 Н 10 O 5) и гексозы (С 6 Н 12 О 6). Важ­нейшие гексозы – глюкоза и фруктоза.Все моносахариды представляют собой бифункциональные со­единения, в состав которых входят неразветвленный углеродный скелет, несколько гидроксильных групп и одна карбонильная груп­па. Моносахариды с альдегидной группой называют альдозами а с кетогруппой – кетозами . Ниже приведены структурные формулы важнейших моносахаридов:

Все эти вещества содержат три или четыре асимметрических атома углерода, поэтому они проявляют оптическую активность и могут существовать в виде оптических изомеров. Знак в скобках в названии углевода обозначает направление вращения плоскости по­ляризации света: (–) обозначает левое вращение, (+) – правое вра­щение. Буква D перед знаком вращения означает, что во всех этих веществах асимметрический атом углерода, наиболее удаленный от карбонильной группы, имеет такую же конфигурацию (т.е. направ­ление связей с заместителями), что и глицериновый альдегид, струк­тура которого приведена выше. Углеводы с противоположной кон­фигурацией относятся к L-ряду:

Обратите внимание на то, что углеводы D- и L-ряда являются зеркальными отражениями друг друга. Большинство природных уг­леводов относится к D-ряду.

Установлено, что в кристаллическом состоянии моносахариды существуют исключительно в циклических формах. Например, глюкоза в твердом виде обычно на­ходится в α-пиранозной форме. При растворении в воде α-глюкопираноза медленно превращается в другие таутомерные формы вплоть до установления рав­новесия. Это является своеобразной кольчатоцепной таутомерной системой.

Урок №45. Жиры, их строение, свойства и применение

«Химия везде, химия во всем:

Во всем, чем мы дышим,

Во всем, что мы пьем,

Во всем, что едим».

Во всем, что мы носим,

Люди давно научились выделять жир из натуральных объектов и использовать его в повседневной жизни. Жир сгорал в примитивных светильниках, освещая пещеры первобытных людей, жиром смазывали полозья, по которым спускали на воду суда. Жиры – основной источник нашего питания. Но неправильное питание, малоподвижный образ жизни приводит к избыточному весу. Животные пустынь запасают жир как источник энергии и воды. Толстый жировой слой тюленей и китов помогает им плавать в холодных водах Северного Ледовитого океана.

Жиры широко распространены в природе. Наряду с углеводами и белками они входят в состав всех животных и растительных организмов и составляют одну из основных частей нашей пищи. Источниками жиров являются живые организмы. Среди животных это коровы, свиньи, овцы, куры, тюлени, киты, гуси, рыбы (акулы, тресковые, сельди). Из печени трески и акулы получают рыбий жир – лекарственное средство, из сельди – жиры, используемые для подкормки сельскохозяйственных животных. Растительные жиры чаще всего бывают жидкими, их называют маслами. Применяются жиры таких растений, как хлопок, лен, соя, арахис, кунжут, рапс, подсолнечник, горчица, кукуруза, мак, конопля, кокос, облепиха, шиповник, масличная пальма и многих других.

Жиры выполняют различные функции: строительную, энергетическую (1 г жира дает 9 ккал энергии), защитную, запасающую. Жиры обеспечивают 50% энергии, требуемой человеку, поэтому человеку необходимо потреблять 70–80 г жиров в день. Жиры составляют 10–20% от массы тела здорового человека. Жиры являются незаменимым источником жирных кислот. Некоторые жиры содержат витамины А, D, Е, К, гормоны.

Многие животные и человек используют жир в качестве теплоизолирующей оболочки, например, у некоторых морских животных толщина жирового слоя достигает метра. Кроме того, в организме жиры являются растворителями вкусовых веществ и красителей. Многие витамины, например витамин А, растворяются только в жирах.

Некоторые животные (чаще водоплавающие птицы) используют жиры для смазки своих собственных мышечных волокон.

Жиры повышают эффект насыщения пищевыми продуктами, т. к. они перевариваются очень медленно и задерживают наступление чувства голода .

История открытия жиров

Еще в 17 в. немецкий ученый, один из первых химиков-аналитиков Отто Тахений (1652–1699) впервые высказал предположение, что жиры содержат «скрытую кислоту».

В 1741 французский химик Клод Жозеф Жоффруа (1685–1752) обнаружил, что при разложении кислотой мыла (которое готовили варкой жира со щелочью) образуется жирная на ощупь масса.

То, что в состав жиров и масел входит глицерин, впервые выяснил в 1779 знаменитый шведский химик Карл Вильгельм Шееле.

Впервые химический состав жиров определил в начале прошлого века французский химик Мишель Эжен Шеврёль, основоположник химии жиров, автор многочисленных исследований их природы, обобщенных в шеститомной монографии " Химические исследования тел животного происхождения" .

1813 г Э. Шеврёль установил строение жиров, благодаря реакции гидролиза жиров в щелочной среде. Он показал, что жиры состоят из глицерина и жирных кислот, причем это не просто их смесь, а соединение, которое, присоединяя воду, распадается на глицерин и кислоты.

Общая формула жиров (триглицеридов)


Жиры – сложные эфиры глицерина и высших карбоновых кислот. Общее название таких соединений – триглицериды.

Классификация жиров

Животные жиры содержат главным образом глицериды предельных кислот и являются твердыми веществами. Растительные жиры, часто называемые маслами, содержат глицериды непредельных карбоновых кислот. Это, например, жидкие подсолнечное, конопляное и льняное масла.


Природные жиры содержат следующие жирные кислоты

Насыщенные:

стеариновая (C 17 H 35 COOH)

пальмитиновая (C 15 H 31 COOH)

Масляная ( C 3 H 7 COOH)

В СОСТАВЕ

ЖИВОТНЫХ

ЖИРОВ

Ненасыщенные :

олеиновая (C 17 H 33 COOH, 1 двойная связь )

линолевая (C 17 H 31 COOH, 2 двойные связи )

линоленовая (C 17 H 29 COOH, 3 двойные связи )

арахидоновая (C 19 H 31 COOH, 4 двойные связи, реже встречается)

В СОСТАВЕ

РАСТИТЕЛЬНЫХ

ЖИРОВ

Жиры содержатся во всех растениях и животных. Они представляют собой смеси полных сложных эфиров глицерина и не имеют чётко выраженной температуры плавления.

  • Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение – рыбий жир). В твёрдых жирах преобладают остатки насыщенных кислот.
  • Растительные жиры – масла (подсолнечное, соевое, хлопковое и др.) – жидкости (исключение – кокосовое масло, масло какао-бобов). Масла содержат в основном остатки ненасыщенных (непредельных) кислот.

Химические свойства жиров

1. Гидролиз, или омыление , жиров происходит под действием воды, с участием ферментов или кислотных катализаторов (обратимо) , при этом образуются спирт - глицерин и смесь карбоновых кислот:

или щелочей (необратимо) . При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами. Мыла получаются при гидролизе жиров в присутствии щелочей:

Мыла - это калиевые и натриевые соли высших карбоновых кислот.

2. Гидрирование жиров – превращение жидких растительных масел в твердые жиры – имеет большое значение для пищевых целей. Продукт гидрогенизации масел – твердый жир (искусственное сало, саломас). Маргарин – пищевой жир, состоит из смеси гидрогенизированных масел (подсолнечного, кукурузного, хлопкого и др.), животных жиров, молока и вкусовых добавок (соли, сахара, витаминов и др.).

Так в промышленности получают маргарин:

В условиях процесса гидрогенизации масел (высокая температура, металлический катализатор) происходит изомеризация части кислотных остатков, содержащих цис-связи С=С, в более устойчивые транс-изомеры. Повышенное содержание в маргарине (особенно, в дешевых сортах) остатков транс-ненасыщенных кислот увеличивает опасность атеросклероза, сердечно-сосудистых и других заболеваний.


Применение жиров

    1. Пищевая промышленность
    1. Фармацевтика
    1. Производство мыла и косметических изделий
    1. Производство смазочных материалов

Жиры - продукт питания. Биологическая роль жиров.

Животные жиры и растительные масла, наряду с белками и углеводами – одна из главных составляющих нормального питания человека. Они являются основным источником энергии: 1 г жира при полном окислении (оно идет в клетках с участием кислорода) дает 9,5 ккал (около 40 кДж) энергии, что почти вдвое больше, чем можно получить из белков или углеводов. Кроме того, жировые запасы в организме практически не содержат воду, тогда как молекулы белков и углеводов всегда окружены молекулами воды. В результате один грамм жира дает почти в 6 раз больше энергии, чем один грамм животного крахмала – гликогена. Таким образом, жир по праву следует считать высококалорийным «топливом». В основном оно расходуется для поддержания нормальной температуры человеческого тела, а также на работу различных мышц, поэтому даже когда человек ничего не делает (например, спит), ему каждый час требуется на покрытие энергетических расходов около 350 кДж энергии, примерно такую мощность имеет электрическая 100-ваттная лампочка.

Для обеспечения организма энергией в неблагоприятных условиях в нем создаются жировые запасы, которые откладываются в подкожной клетчатке, в жировой складке брюшины – так называемом сальнике. Подкожный жир предохраняет организм от переохлаждения (особенно эта функция жиров важна для морских животных). В течение тысячелетий люди выполняли тяжелую физическую работу, которая требовала больших затрат энергии и соответственно усиленного питания. Для покрытия минимальной суточной потребности человека в энергии достаточно всего 50 г жира. Однако при умеренной физической нагрузке взрослый человек должен получать с продуктами питания несколько больше жиров, но их количество не должно превышать 100 г (это дает треть калорийности при диете, составляющей около 3000 ккал). Следует отметить, что половина из этих 100 г содержится в продуктах питания в виде так называемого скрытого жира. Жиры содержатся почти во всех пищевых продуктах: в небольшом количестве они есть даже в картофеле (там их 0,4%), в хлебе (1–2%), в овсяной крупе (6%). В молоке обычно содержится 2–3% жира (но есть и специальные сорта обезжиренного молока). Довольно много скрытого жира в постном мясе – от 2 до 33%. Скрытый жир присутствует в продукте в виде отдельных мельчайших частиц. Жиры почти в чистом виде – это сало и растительное масло; в сливочном масле около 80% жира, в топленом – 98%. Конечно, все приведенные рекомендации по потреблению жиров – усредненные, они зависят от пола и возраста, физической нагрузки и климатических условий. При неумеренном потреблении жиров человек быстро набирает вес, однако не следует забывать, что жиры в организме могут синтезироваться и из других продуктов. «Отрабатывать» лишние калории путем физической нагрузки не так-то просто. Например, пробежав трусцой 7 км, человек тратит примерно столько же энергии, сколько он получает, съев всего лишь одну стограммовую плитку шоколада (35% жира, 55% углеводов).Физиологи установили, что при физической нагрузке, которая в 10 раз превышала привычную, человек, получавший жировую диету, полностью выдыхался через 1,5 часа. При углеводной же диете человек выдерживал такую же нагрузку в течение 4 часов. Объясняется этот на первый взгляд парадоксальный результат особенностями биохимических процессов. Несмотря на высокую «энергоемкость» жиров, получение из них энергии в организме – процесс медленный. Это связано с малой реакционной способностью жиров, особенно их углеводородных цепей. Углеводы, хотя и дают меньше энергии, чем жиры, «выделяют» ее намного быстрее. Поэтому перед физической нагрузкой предпочтительнее съесть сладкое, а не жирное.Избыток в пище жиров, особенно животных, увеличивает и риск развития таких заболеваний как атеросклероз, сердечная недостаточность и др. В животных жирах много холестерина (но не следует забывать, что две трети холестерина синтезируется в организме из нежировых продуктов – углеводов и белков).

Известно, что значительную долю потребляемого жира должны составлять растительные масла, которые содержат очень важные для организма соединения – полиненасыщенные жирные кислоты с несколькими двойными связями. Эти кислоты получили название «незаменимых». Как и витамины, они должны поступать в организм в готовом виде. Из них наибольшей активностью обладает арахидоновая кислота (она синтезируется в организме из линолевой), наименьшей – линоленовая (в 10 раз ниже линолевой). По разным оценкам суточная потребность человека в линолевой кислоте составляет от 4 до 10 г. Больше всего линолевой кислоты (до 84%) в сафлоровом масле, выжимаемом из семян сафлора – однолетнего растения с ярко-оранжевыми цветками. Много этой кислоты также в подсолнечном и ореховом масле.

По мнению диетологов, в сбалансированном рационе должно быть 10% полиненасыщенных кислот, 60% мононенасыщенных (в основном это олеиновая кислота) и 30% насыщенных. Именно такое соотношение обеспечивается, если треть жиров человек получает в виде жидких растительных масел – в количестве 30–35 г в сутки. Эти масла входят также в состав маргарина, который содержит от 15 до 22% насыщенных жирных кислот, от 27 до 49% ненасыщенных и от 30 до 54% полиненасыщенных. Для сравнения: в сливочном масле содержится 45–50% насыщенных жирных кислот, 22–27% ненасыщенных и менее 1% полиненасыщенных. В этом отношении высококачественный маргарин полезнее сливочного масла.

Необходимо помнить

Насыщенные жирные кислоты отрицательно влияют на жировой обмен, работу печени и способствуют развитию атеросклероза. Ненасыщенные (особенно линолевая и арахидоновая кислоты) регулируют жировой обмен и участвуют в выведении холестерина из организма. Чем выше содержание ненасыщенных жирных кислот, тем ниже температура плавления жира. Калорийность твердых животных и жидких растительных жиров примерно одинакова, однако физиологическая ценность растительных жиров намного выше. Более ценными качествами обладает жир молока. Он содержит одну треть ненасыщенных жирных кислот и, сохраняясь в виде эмульсии, легко усваивается организмом. Несмотря на эти положительные качества, нельзя употреблять только молочный жир, так как никакой жир не содержит идеального состава жирных кислот. Лучше всего употреблять жиры как животного, так и растительного происхождения. Соотношение их должно быть 1:2,3 (70% животного и 30% растительного) для молодых людей и лиц среднего возраста. В рационе питания пожилых людей должны преобладать растительные жиры.

Жиры не только участвуют в обменных процессах, но и откладываются про запас (преимущественно в брюшной стенке и вокруг почек). Запасы жира обеспечивают обменные процессы, сохраняя для жизни белки. Этот жир обеспечивает энергию при физической нагрузке, если с пищей жира поступило мало, а также при тяжелых заболеваниях, когда из-за пониженного аппетита его недостаточно поступает с пищей.

Обильное потребление с пищей жира вредно для здоровья: он в большом количестве откладывается про запас, что увеличивает массу тела, приводя порой к обезображиванию фигуры. Увеличивается его концентрация в крови, что, как фактор риска, способствует развитию атеросклероза, ишемической болезни сердца, гипертонической болезни и др.

ЦОР:

Гидролиз жиров. Гидрирование жидких жиров

Классификация жиров

Строение жиров

Изомерами называются соединения, имеющие идентичный химический состав, но различное строение молекул. Изомеризация жиров и масел может происходить но нескольким направлениям :

Изомерия по положению в триглнцериде. Этот вид изомерии представляет собой перегруппировку жирных кислот в молекуле глицерина. Такая перегруппировка обычно происходит при переэтерификации, но может также возникать при термическом воздействии. Изменение положения жирной кислоты в триглнцериде может влиять на форму кристаллов, характеристики плавления и на метаболизм липидов в организме.

Изомерия положения. Ненасыщенные жирные кислоты могут изомеризопать-ся в кислых или щелочных средах, а также при воздействии высоких температур путем миграции двойной связи от положений 9 и 12 на другие, например, положения 9 и 10, 10 и 12 или 8 и 10. Пищевая ценность при перемещении двойной связи па новое положение теряется, жирные кислоты перестают быть эссенци-альными.

Пространственная изомерия, двойная связь может иметь две конфигурации: цис- или транс-форму. В природных жирах и маслах обычно содержатся цис-нзомеры жирных кислот, которые наиболее химически активны и требуют относительно небольшого количества энергии для перехода в транс-изомеры. Транс-изомеры характеризуются более плотной упаковкой молекул, позволяющей им вести себя подобно насыщенным жирным кислотам с высокой температурой плавления. С точки зрения г игиены питания транс-изомеры жирных кислот рассматриваются как аналоги насыщенных жирных кислот, оба вида соединений могут вызывать возрастание холестерина ЛНП в системе кровообращения. 7рянг-жнрные кислоты образуются при очень высоких температурах, преимущественно при гидрогенизации, и в меньшей степени — при дезодорации. Содержание /лрянс-изомеров н гидрогенизированном соевом и рапсовом маслах может достигать 55%, изомеры представлены преимущественно транс-элаидиновой (С,.,) кислотой, поскольку почти вся линоленовая (С1в.3) и лино-левые (С,х 2) кислоты гидрогенизируются до жирных кислот С)К |. Изомерия, вызванная термическим воздействием, особенно влияющим на линоленовую

18"з) кислоту и в меньшей степени на жирную кислоту Clg 2, зависит от темпратуры и продолжительности воздействия. Для того чтобы образование трПНс изомеров не превышало 1%, температура дезодорации не должна превьццат 240 °С, продолжительность обработки - 1 ч, более высокие температуры могу> применяться при менее длительной выдержке.

Сопряженная линолевая кислота (conjugated linoleic fatty acids — CLA). CLA яв ляется природным изомером линолевой кислоты (С|Я 2), в котором две двойные связи являются сопряженными и расположены у атомов углерода 9 и 11 или Ю и 12, с возможным сочетанием цис- и транс-изомеров. CI.A обычно продуццру. ется анаэробными бактериями рубца крупного рогатого скота при биогидрогенизации. Современные международные медицинские исследования показали что CLA может обладать свойствами, благоприятно влияющими на здоровье человека, например, антитуморогенными1 и антиатерогеннымн2 .

Глава 30. СЛОЖНЫЕ ЭФИРЫ. ЖИРЫ

Мыла и моющие средства. Натриевые и калиевые соли высших жирных кислот называют мылами, т.к. они обладают хорошими моющими свойствами. На­триевые соли составляют основу твердых мыл, в то время как ка­лиевые соли – жидких. Их получают кипячением животного сала либо растительного масла с гидроксидом натрия или калия – отсюда старинное название щелочного гидролиза жиров – «омыление». Очищающие (моющие) свойства мыла объясняются смачиваю­щей способностью растворимых солей высших жирных кислот, т.е. анионы мыла обладают сродством, как к жирным загрязнени­ям, так и к воде. Анионная карбоксигруппа обладает сродством к воде: она гидрофильна. Углеводородная же цепь жирной кислоты обладает сродством к жирным загрязнениям. Она представляет собой гидрофобный конец молекулы мыла. Этот конец растворя­ется в капле грязи, в результате чего происходит ее трансформа­ция и превращение в мицеллу. Удаление «пенообразных» мицелл с загрязненной поверхности достигается ее промыванием водой.

В так называемой жесткой воде, содержащей ионы Са 2+ и Мg 2+ происходит уменьшение моющей способности мыла, поскольку, взаимодействуя с ионами кальция и магния, мыла образуют нерас­творимые кальциевые и магниевые соли, например:

В результате этого мыло образует вместо пены хлопья на поверх­ности воды и расходуется бесполезно. Этого недостатка лишены син­тетические моющие средства (детергенты), представляющие собой натриевые соли различных сулъфокислот общей формулы:

Распространенными синтетическими моющими средствами (де­тергентами) являются алкилбензолсульфонаты:

Правда, повсеместное использование синтетических детергентов (стиральные порошки) создает свои проблемы. Типичный стиральный порошок содержит приблизительно 70% синтетического моющего средства и приблизительно 30% неорганических фосфатов. Фосфаты удаляют растворимые соли кальция. К сожалению, эти фосфаты попа­дают в сточные воды, которые сбрасываются в ручьи, реки, озера или океаны. Фосфаты являются питательной средой для определенных во­дорослей. Это приводит к сильному разрастанию цианобактерий, особенно в замкнутых водоемах, например, в озерах.

Среди функциональных производных карбоновых кислот особое место занимают сложные эфиры – соединения, представляющие карбоновые кислоты, у которых атом водорода в карбоксильной группе заменен углеводородным радикалом. Общая формула сложных эфиров

Молекула сложного эфира состоит из остатка кисло­ты (1) и остатка спирта (2).

Названия сложных эфиров произ­водят от названия углеводородного радикала и названия кислоты, в котором вместо окончания «-овая кислота» используют суффикс «ат», например:


Часто сложные эфиры называют по тем остаткам кислот и спир­тов, из которых они состоят. Так, рассмотренные выше сложные эфиры могут быть названы: уксусноэтиловый эфир, кротоновометиловый эфир.

Для сложных эфиров характерны три вида изомерии: 1. Изомерия углеродной цепи, начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку – с пропилового спирта, например:

2. Изомерия положения сложноэфирной группировки – СО–О–. Этот вид изомерии начинается сосложных эфиров, в молекулах ко­торых содержится не менее 4 атомов углерода, например:

3. Межклассовая изомерия, например:

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и цис-транс- изомерия.

Сложные эфиры можно рассматривать как производные кислот, у которых атом водорода в карбоксильной группе замещен на углеводородный радикал:

Номенклатура.

Сложные эфиры называют по кислотам и спиртам, остатки которых участвуют в их образовании, например Н-СО-О-СН3 - метилформиат, или метиловый эфир муравьиной кислоты; - этилацетат, или этиловый эфир уксусной кислоты.

Способы получения.

1. Взаимодействие спиртов и кислот (реакция этерификации):

2. Взаимодействие хлорангидридов кислот и спиртов (или алкоголятов щелочных металлов):

Физические свойства.

Сложные эфиры низших кислот и спиртов - жидкости легче воды, с приятным запахом. В воде растворимы только сложные эфиры с наименьшим числом атомов углерода. В спирте и дизтиловом эфире сложные эфиры растворимы хорошо.

Химические свойства.

1. Гидролиз сложных эфиров - важнейшая реакция этой группы веществ. Гидролиз под действием воды - обратимая реакция. Для смещения равновесия вправо используются щелочи:

2. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

3. Под действием аммиака сложные эфиры превращаются в амиды кислот:

Жиры. Жиры представляют собой смеси сложных эфиров, образованных трехатомным спиртом глицерином и высшими жирными кислотами. Общая формула жиров:

где R - радикалы высших жирных кислот.

Наиболее часто в состав жиров входят предельные кислоты пальмитиновая и стеариновая и непредельные кислоты олеиновая и линолевая

Получение жиров.

В настоящее время практическое значение имеет лишь получение жиров из природных источников животного или растительного происхождения.

Физические свойства.

Жиры, образованные предельными кислотами, - твердые вещества, а непредельными - жидкие. Все очень плохо растворимы в воде, хорошо растворимы в диэтиловом эфире.

Химические свойства.

1. Гидролиз, или омыление жиров происходит под действием воды (обратимо) или щелочей (необратимо):

При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами.

2. Гидрогенизацией жиров называется процесс присоединения водорода к остаткам непредельных кислот, входящих в состав жиров. При этом остатки непредельных кислот переходят в остатки предельных кислот, и жиры из жидких превращаются в твердые.

Из важнейших пищевых веществ - белков, жиров и углеводов - жиры обладают наибольшим запасом энергии.