Принцип работы и назначение инфракрасного датчика движения. Инфракрасные охранные извещатели Принцип работы активных ик извещателей

12.06.2019

Среди большого многообразия охранных извещателей, инфракрасный датчик движения является самым распространенным устройством. Доступная цена и эффективность, вот качества, обеспечившие им популярность. А все благодаря тому, что в начале девятнадцатого века обнаружили инфракрасное излучение.

Оно находится за границей видимого красного света в диапазоне 0,74-2000 мкм. Оптические свойства веществ сильно различаются и зависят от типа облучения. Небольшой слой воды является непрозрачным для ИК излучения. Инфракрасное излучение солнца составляет 50 процентов всей излучаемой энергии.

Область применения

Инфракрасные датчики движения для охраны применяются давно. Они фиксировали перемещения теплых объектов в помещениях, и передавали сигнал тревоги на контрольную панель. Их стали совмещать с видеокамерами и фотоаппаратами. При нарушении происходила фиксация происшествия. Потом область применения расширилась. Зоологи стали применять в фотоловушках для контроля исследуемых животных.

Больше всего ИК датчики применяются в системе умный дом, где играют роль сенсора присутствия. При попадании теплокровного объекта в область действия устройства, оно включает освещение в помещении или на улице. Экономится электричество и облегчается жизнь людям.

В системах контроля доступа извещатели движения управляют открыванием и закрыванием дверей общественных сооружений. По расчетам экспертов рынок ИК сенсоров будет расти на 20% ежегодно ближайшие 3-5 лет.

Принцип работы ИК датчика движения

Работа ИК извещателя заключается в контроле инфракрасного излучения определенной области, сравнении его с фоновым уровнем, и по результатам анализа выдачи сообщения.

ИК датчики движения для охраны используют активные и пассивные виды сенсоров. Первые для контроля используют собственный передатчик, облучающие все в зоне действия устройства. Приемник получает отраженную часть ИК излучения и по его характеристикам определяет, было нарушение зоны охраны или нет. Активные датчики бывают комбинированного типа, когда принимающие и передающие блоки разделены, это извещатели контролирующие периметр объекта. Имеют большую дальность действия по сравнению с пассивными устройствами.

Пассивный инфракрасный датчик движения не имеет излучателя, он реагирует на изменение окружающего ИК излучения. В общем случае, извещатель имеет два чувствительных элемента, способных фиксировать инфракрасное излучение. Перед сенсорами устанавливается линза Френеля, разбивающая пространство на несколько десятков зон.

Маленькая линза собирает излучение с конкретного участка пространства и посылает на свой чувствительный элемент. Соседняя линза, контролирующая смежный участок посылает поток излучения на второй сенсор. Излучения соседних участков примерно одинаковы. При нарушении баланса, превышении какого-то порогового значения, прибор извещает контрольную панель о нарушении зоны охраны.

Схема ИК датчика

Каждый производитель имеет уникальную принципиальную схему ИК извещателя, но функционально они примерно одинаковы.

ИК датчик имеет оптическую систему, пирочувствительный элемент, блок обработки сигналов.

Оптическая система

Рабочая область современных датчиков движения весьма разнообразна благодаря различным формам оптической системы. От устройства расходятся лучи в радиальном направлении в различных плоскостях.

Так как извещатель имеет сдвоенный сенсор, то все лучи раздваиваются.

Оптическая система ориентируется таким образом, что будет контролировать только одну плоскость или несколько плоскостей на разных уровнях. Может контролировать пространство вкруговую или по лучу.

При построении оптики ИК-датчиков часто используются линзы Френеля, представляющих множество призматических фасеток на выпуклой пластиковой чашке. Каждая линза собирает ИК поток со своего участка пространства и отправляет на ПИР элемент.

Конструкция оптической системы такова, что избирательность по всем линзам одинакова. Чтобы защититься от собственного тепла элементов, насекомых в устройстве устанавливается герметичная камера. Редко используется зеркальная оптика. Это значительно повышает дальность действия устройства и цену прибора.

Пирочувствительный элемент

Роль сенсора в ИК датчике играет пироэлектрический преобразователь на чувствительных полупроводниковых элементах. Он состоит из двух сенсоров. На каждый из них от двух соседних лучей поступает поток излучения. При одинаковом равномерном фоне сенсор молчит. При возникновении дисбаланса, в одной зоне появляется дополнительный источник тепла, а в другой нет, сенсор срабатывает.

Для повышения надежности и уменьшения ложных срабатываний в последнее время стали применять счетверенные ПИР элементы. Это увеличило чувствительность и помехозащищенность прибора. Но уменьшило расстояние уверенного распознавания нарушителя. Для решения этого приходится использовать прецизионную оптику.

Блок обработки сигналов

Главной задачей блока является надежное распознавание человека на фоне помех.

Они бывают самые разнообразные:

  1. солнечное излучение;
  2. искусственные ИК источники;
  3. кондиционеры и холодильники;
  4. животные;
  5. конвекция воздуха;
  6. электромагнитные помехи;
  7. вибрация.

Блок обработки для анализа использует амплитуду, форму и длительность выходного сигнала пироэлектрического преобразователя. Воздействие нарушителя вызывает симметричный двухполярный сигнал. Помехи выдают несимметричные значения на обрабатывающий модуль. В простейшем варианте сравнивается амплитуда сигнала с пороговым значением.

При превышении порога извещатель сообщает об этом, подавая определенный сигнал на контрольную панель. В более сложных датчиках измеряется длительность превышения порога, количество этих превышений. Для повышения помехозащищенности прибора используется автоматическая термокомпенсация. Она обеспечивает постоянную чувствительность во всем диапазоне температур.

Обработка сигнала осуществляется аналоговыми и цифровыми устройствами. В новейших устройствах начали применять цифровые алгоритмы обработки сигнала, что позволило улучшить избирательность прибора.

Эффективность использования ИК извещателя в охранной сигнализации

От правильности выбора вида сенсора, расположения на объекте охраны во многом зависит его эффективность. Пассивные ИК датчики движения уличные и внутреннего применения реагируют на перемещения теплых по сравнению с фоном объектов при определенных скоростях перемещения. При маленькой скорости движения, изменения потоков инфракрасного излучения в соседних секторах настолько незначительны, что он воспринимается, как фоновый дрейф, и не реагирует на нарушение зоны охраны.

Если нарушитель облачится в защитный костюм с отличной теплоизоляцией, то ИК датчик движения не отреагирует, не будет нарушения баланса излучения в соседних зонах. Человек сольется с фоновым излучением.

Нарушитель двигается вдоль лучей извещателя движения с малой скоростью, в этом случае он нередко молчит.

Изменения потоков оказываются недостаточными для срабатывания устройства. Особенно свойственно извещателям с функцией защиты от животных. В них уменьшают чувствительность, чтобы избежать реакции на появления домашних питомцев.

Важно правильно установить инфракрасный датчик. Требуется по конфигурации здания применять устройство типа «шторка», следует так и делать. Производитель рекомендует монтаж прибора на определенной высоте, надо соблюсти и это.

Для повышения эффективности работы инфракрасных датчиков их применяют совместно с сенсорами, работающими на других принципах.

Обычно, дополнительно придается радиоволновой извещатель с высокой чувствительностью, что снижает процент ложных срабатываний и повышает надежность охранной сигнализации. При защите окон от проникновения дополнительно устанавливается ультразвуковой извещатель, реагирующий на разбитие стекла.

Заключение

Постепенно ИК датчики усложняются, повышается их чувствительность, улучшается избирательность. Сенсоры находят широкое распространение в системах «умный дом», видеонаблюдения, контроль доступа. Совместное использование с различными устройствами повысило потребительские свойства датчиков. Им уготована долгая жизнь.

Видео: Датчик движения, принцип работы

Инфракрасные извещатели являются одними из самых распространенных в системах охранной сигнализации. Объясняется это весьма широким спектром их применения.

Они используются:

  • для контроля внутреннего объема помещений;
  • организации охраны периметров;
  • блокировки различных строительных конструкций "на проход".

Помимо климатического исполнения (уличной и внутренней установки) они также подразделяются по принципу действия. Существует две большие группы: активные и пассивные. Кроме того, инфракрасные извещатели подразделяются по типу зоны обнаружения, а именно:

  • объемные;
  • линейные;
  • поверхностные.

Давайте рассмотрим по порядку для каких целей применяются те или иные их виды.

Пассивные инфракрасные извещатели.

Эти датчики имеют в своем составе линзу, "нарезающую" контролируемую область на отдельные сектора (рис.1). Срабатывание извещателя происходит при обнаружении температурных перепадов между этими зонами. Таким образом, мнение, что такой охранный датчик реагирует чисто на тепло ошибочно.

Если человек, находящийся в зоне обнаружения, будет стоять неподвижно извещатель не сработает. Кроме того, температура объекта, близкая к фоновой также влияет на его чувствительность в сторону уменьшения.

Тоже самое относится к случаям, когда скорость перемещения объекта ниже или выше нормируемой величины. Как правило, это значение лежит в пределах 0,3-3 метра/секунду. Для уверенного обнаружения нарушителя этого вполне достаточно.

Активные инфракрасные извещатели.

Устройства этого типа имеют в своем составе излучатель и приемник. Они могут быть выполнены отдельными блоками или совмещены в одном корпусе. В последнем случае при установке такого охранного прибора дополнительно используется элемент, отражающий ИК лучи.

Активный принцип действия характерен для линейных датчиков, которые срабатывают при пересечении инфракрасного луча. Ниже рассмотрены принципы действия и особенности применения основных типов ИК извещателей.

ОБЪЕМНЫЕ ИНФРАКРАСНЫЕ ИЗВЕЩАТЕЛИ

Эти устройства являются пассивными (что это такое см.выше) и используются, в основном для контроля внутреннего объема помещений. Диаграмма направленности объемного датчика характеризуется:

  • углом раскрыва в вертикальной и горизонтальной плоскостях;
  • дальностью действия извещателя.

Обратите внимание - дальность действия указывается по центральному лепестку диаграммы, для боковых она будет меньше.

Что характерно для любого инфракрасного датчика, в том числе объемного - любое препятствие для него является непрозрачным, соответственно создает мертвые зоны. С одной стороны - это недостаток, с другой - достоинство, поскольку полностью отсутствует реакция на движущиеся предметы за пределами охраняемого помещения.

Также к недостаткам следует отнести возможность ложного срабатывание от таких факторов как:

  • конвекционные тепловые потоки, например, от систем отопления различного принципа действия;
  • засветки от движущихся источников света - чаще всего автомобильных фар через окно.

Таким образом, при монтаже объемного извещателя эти моменты игнорировать нельзя. По способу установки существует два исполнения "объемников".

Настенные объемные ИК извещатели.

Идеально подходят для офисов, квартир, частных домов. В таких помещениях мебель и другие предметы интерьера располагаются, как правило, вдоль стен, поэтому слепых зон не создают. Если учесть, что горизонтальный угол обзора таких датчиков составляет порядка 90 градусов, то, установив его в углу помещения, одним устройством можно практически полностью заблокировать небольшую комнату.

Потолочные объемные извещатели.

Для таких объектов как магазины или склады характерной особенностью является установка стеллажей или витрин по всей площади помещения. Установка потолочного датчика в таких случаях более эффективна, конечно, если указанные элементы имеют высоту ниже потолка.

В противном случае придется блокировать каждый образовавшийся отсек. Справедливости ради, нужно заметить, что такая необходимость возникает не всегда, но это уже тонкости проектирования сигнализации для каждого конкретного объекта с учетом всех его индивидуальных особенностей.

ЛИНЕЙНЫЕ ИНФРАКРАСНЫЕ ИЗВЕЩАТЕЛИ

По своему принципу действия они являются активными и формируют один или несколько лучей, отслеживая их пересечение возможным нарушителем. В отличие от объемных, линейные датчики устойчивы к различного рода воздушным потокам, да и прямая засветка, в большинстве случаев, им не повредит.

Принцип работы линейного однолучевого инфракрасного излучателя поясняется рисунком 2.

Дальность действия активных линейных устройств составляет от десятков до сотен метров. Наиболее характерные варианты их применения:

  • блокировка коридоров;
  • охрана открытых и огороженных периметров территории.

Для охраны периметра используются извещатели, имеющие более одного луча (лучше если их будет не менее трех). Это достаточно очевидно, поскольку снижает вероятность проникновения под или над контрольной зоной.

При установке и настройке инфракрасных линейных извещателей требуется точная юстировка приемника и передатчика для двухблочных устройств или отражателя и комбинированного блока (для одноблочных). Дело в том, что сечение (диаметр) инфракрасного луча сравнительно невелик, поэтому даже небольшое угловое смещение передатчика или приемника приводит к его значительному линейному отклонению в точке приема.

Из сказанного также вытекает необходимость крепления всех элементов таких извещателей на жестких линейных конструкциях, полностью исключающих возможные вибрации.

Должен заметить, что хороший "линейник" - удовольствие достаточно дорогое. Если стоимость однолучевых устройств с небольшой дальностью действия еще лежит в пределах нескольких тысяч рублей, то с увеличением контролируемой дальности и количества ИК лучей цена возрастает до десятков тысяч.

Объясняется это тем, что охранные извещатели такого типа являются достаточно сложными электромеханическими устройствами, содержащими, помимо электроники, высокоточные оптические устройства.

Кстати, пассивные линейные извещатели тоже существуют, но по максимальной дальности действия они ощутимо уступают своим линейным собратьям.

УЛИЧНЫЕ ИНФРАКРАСНЫЕ ИЗВЕЩАТЕЛИ

Вполне очевидно, что извещатель охранной сигнализации уличного исполнения должен иметь соответствующее климатическое исполнение. Это касается, в первую очередь:

  • диапазона рабочих температур;
  • степени пылевлагозащиты.

По общепринятой существующей классификации класс защиты уличного извещателя должен быть не ниже IP66. По большому счету, для большинства потребителей это не принципиально - вполне достаточно указания "уличный" в описании технических параметров прибора. На температурный же диапазон внимание обратить стоит.

Большего интереса заслуживают особенности применения такого рода устройств и факторы, влияющие на надежность охраны.

По характеру зоны обнаружения инфракрасные охранные извещатели, предназначенные для наружной установки могут быть любого типа (в порядке убывания популярности):

  • линейные;
  • объемные;
  • поверхностные.

Как уже говорилось, уличные линейные извещатели применяются для охраны периметра открытых площадок. Для этих же целей могут использоваться и поверхностные датчики.

Объемные устройства служат для контроля различного рода площадей. Стоит сразу заметить, что по дальности действия они уступают линейным датчикам. Вполне естественно, что цены на уличные извещатели значительно выше, чем на устройства, предназначенные для внутренней установки.

Теперь, что касается практической стороны эксплуатации в системах охранной сигнализации инфракрасных наружных извещателей. Основными факторами, провоцирующими ложные срабатывания установленных на улице охранных датчиков являются:

  • наличие на охраняемом участке различной растительности;
  • перемещение животных и птиц;
  • природные явления в виде дождя, снега, тумана и пр.

Первый момент может показаться непринципиальным, поскольку, на первый взгляд, является статичным и может быть учтен на стадии проектирования. Не стоит, однако, забывать, что деревья, трава и кусты растут и со временем могут стать помехой для нормальной работы охранного оборудования.

Второй фактор производители стараются компенсировать применением соответствующих алгоритмов обработки сигнала и эффект от этого есть. Правда, как не крути, если объект даже с небольшими линейными размерами переместится в непосредственной близости от извещателя, то, скорее всего, будет идентифицирован как нарушитель.

Что касается последнего пункта. Здесь все зависит от изменения оптической плотности среды. Говоря простым языком, сильны дождь, крупный снег или густой туман могут сделать инфракрасный извещатель полностью неработоспособным.

Так что, при принятии решения об использовании в сигнализации уличных охранных извещателей учтите все сказанное. Таким образом вы сможете избавить себя от многих неприятных сюрпризов при эксплуатации наружной охранной системы.

* * *

© 2014 - 2019 г.г. Все права защищены.

Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и официальных документов

В 21-м веке все знакомы с ИК-датчиками – они открывают двери в аэропортах и магазинах когда вы подходите к двери. Они же обнаруживают движение и подают сигнал тревоги в охранной сигнализации. В настоящее время пассивные оптико-электронные инфракрасные (ИК) извещатели занимают лидирующие позиции при выборе защиты помещений от несанкционированного вторжения на объектах охраны. Эстетичный внешний вид, простота монтажа, настройки и обслуживания зачастую обеспечивают им приоритет по сравнению с другими средствами обнаружения.

Пассивные оптико-электронные инфракрасные (ИК) извещатели (их часто называют датчиками движения) обнаруживают факт проникновения человека в защищаемую (контролируемую) часть пространства, формируют сигнал тревожного извещения и путем размыкания контактов исполнительного реле (реле ПЦН) передают сигнал «тревога» на средства оповещения. В качестве средств оповещения могут использоваться устройства оконечные (УО) систем передачи извещений (СПИ) или прибор приемно-контрольный охранно-пожарный (ППКОП). В свою очередь, вышеназванные устройства (УО или ППКОП) по различным каналам передачи данных транслируют полученное тревожное извещение на пульт централизованного наблюдения (ПЦН) или местный пульт охраны.

Как работает пассивный ИК-датчик движения

Принцип работы пассивных оптико-электронных ИК-извещателей основан на восприятии изменения уровня инфракрасного излучения температурного фона, источниками которого являются тело человека или мелких животных, а также всевозможных предметов, находящихся в поле их зрения.

В пассивных оптико-электронных ИК-извещателях инфракрасное тепловое излучение попадает на линзу Френеля, после чего фокусируется на чувствительном пироэлементе, расположенном на оптической оси линзы (рис. 1).

Пассивные ИК-извещатели принимают потоки инфракрасной энергии от объектов и преобразуются пироприемником в электрический сигнал, который поступает через усилитель и схему обработки сигнала на вход формирователя тревожного извещения (рис. 1)1.

Для того чтобы нарушитель был обнаружен ИК-пассивным датчиком, необходимо выполнение следующих условий:

    нарушитель должен пересечь в поперечном направлении луч зоны чувствительности датчика;
    движение нарушителя должно происходить в определенном интервале скоростей;
    чувствительность датчика должна быть достаточной для регистрации разницы температур поверхности тела нарушителя (с учетом влияния его одежды) и фона (стены, пол).

ИК-пассивные датчики состоят из трех основных элементов:

    оптической системы, формирующей диаграмму направленности датчика и определяющей форму и вид пространственной зоны чувствительности;
    пироприемника, регистрирующего тепловое излучение человека;
    блока обработки сигналов пироприемника, выделяющего сигналы, обусловленные движущимся человеком, на фоне помех естественного и искусственного происхождения.

В зависимости от исполнения линзы Френеля пассивные оптико-электронные ИК-извещатели обладают различными геометрическими размерами контролируемого пространства и могут быть как с объемной зоной обнаружения, так и с поверхностной или линейной. Дальность действия таких извещателей лежит в диапазоне от 5 до 20 м. Внешний вид этих извещателей представлен на рис. 2.

Оптическая система

Современные ИК-датчики характеризуются большим разнообразием возможных форм диаграмм направленности. Зона чувствительности ИК-датчиков представляет собой набор лучей различной конфигурации, расходящихся от датчика по радиальным направлениям в одной или нескольких плоскостях. В связи с тем, что в ИК-детекторах используются сдвоенные пироприемники, каждый луч в горизонтальной плоскости расщепляется на два:

Зона чувствительности детектора может иметь вид:

    одного или нескольких, сосредоточенных в малом угле, узких лучей;
    нескольких узких лучей в вертикальной плоскости (лучевой барьер);
    одного широкого в вертикальной плоскости луча (сплошной занавес) или в виде многовеерного занавеса;
    нескольких узких лучей в горизонтальной или наклонной плоскости (поверхностная одноярусная зона);
    нескольких узких лучей в нескольких наклонных плоскостях (объемная многоярусная зона).
    При этом возможно изменение в широком диапазоне протяженности зоны чувствительности (от 1 м до 50 м), угла обзора (от 30° до 180°, для потолочных датчиков 360°), угла наклона каждого луча (от 0° до 90°), количества лучей (от 1 до нескольких десятков).

Многообразие и сложная конфигурация форм зоны чувствительности обусловлены в первую очередь следующими факторами:

    стремлением разработчиков обеспечить универсальность при оборудовании различных по конфигурации помещений — небольшие комнаты, длинные коридоры, формирование зоны чувствительности специальной формы, например с зоной нечувствительности (аллеей) для домашних животных вблизи пола и т.п.;
    необходимостью обеспечения равномерной по охраняемому объему чувствительности ИК детектора.

На требовании равномерной чувствительности целесообразно остановиться подробнее. Сигнал на выходе пироприемника при прочих равных условиях тем больше, чем больше степень перекрытия нарушителем зоны чувствительности детектора и чем меньше ширина луча и расстояние до детектора. Для обнаружения нарушителя на большом (10…20 м) расстоянии желательно, чтобы в вертикальной плоскости ширина луча не превышала 5°…10°, в этом случае человек практически полностью перекрывает луч, что обеспечивает максимальную чувствительность. На меньших расстояниях чувствительность детектора в этом луче существенно возрастает, что может привести к ложным срабатываниям, например, от мелких животных. Для уменьшения неравномерной чувствительности используются оптические системы, формирующие несколько наклонных лучей, ИК детектор при этом устанавливается на высоте выше человеческого роста. Общая длина зоны чувствительности тем самым разделяется на несколько зон, причем «ближние» к детектору лучи для снижения чувствительности делаются обычно более широкими. За счет этого обеспечивается практически постоянная чувствительность по расстоянию, что с одной стороны способствует уменьшению ложных срабатываний, а с другой стороны повышает обнаружительную способность за счет устранения мертвых зон вблизи детектора.

При построении оптических систем ИК-датчиков могут использоваться:

    линзы Френеля — фасеточные (сегментированные) линзы, представляющие собой пластиковую пластину с отштампованными на ней несколькими призматическими линзами-сегментами;
    зеркальная оптика — в датчике устанавливается несколько зеркал специальной формы, фокусирующих тепловое излучение на пироприемник;
    комбинированная оптика, использующая и зеркала, и линзы Френеля.
    В большинстве ИК-пассивных датчиков используются линзы Френеля. К достоинствам линз Френеля относятся:
    простота конструкции детектора на их основе;
    низкая цена;
    возможность использования одного датчика в различных приложениях при использовании сменных линз.

Обычно каждый сегмент линзы Френеля формирует свой луч диаграммы направленности. Использование современных технологий изготовления линз позволяет обеспечить практически постоянную чувствительность детектора по всем лучам за счет подбора и оптимизации параметров каждой линзы-сегмента: площади сегмента, угла наклона и расстояния до пироприемника, прозрачности, отражающей способности, степени дефокусировки. В последнее время освоена технология изготовления линз Френеля со сложной точной геометрией, что дает 30% увеличение собираемой энергии по сравнению со стандартными линзами и соответственно увеличение уровня полезного сигнала от человека на больших расстояниях. Материал, из которого изготавливаются современные линзы, обеспечивает защиту пироприемника от белого света. К неудовлетворительной работе ИК-датчика могут привести такие эффекты, как тепловые потоки, являющиеся результатом нагревания электрических компонентов датчика, попадание насекомых на чувствительные пироприемники, возможные переотражения инфракрасного излучения от внутренних частей детектора. Для устранения этих эффектов в ИК-датчиках последнего поколения применяется специальная герметичная камера между линзой и пироприемником (герметичная оптика), например в новых ИК-датчиках фирм PYRONIX и C&K. По оценкам специалистов, современные высокотехнологичные линзы Френеля по своим оптическим характеристикам практически не уступают зеркальной оптике.

Зеркальная оптика как единственный элемент оптической системы применяется достаточно редко. ИК-датчики с зеркальной оптикой выпускаются, например, фирмами SENTROL и ARITECH. Преимуществами зеркальной оптики являются возможность более точной фокусировки и, как следствие, увеличение чувствительности, что позволяет обнаруживать нарушителя на больших расстояниях. Использование нескольких зеркал специальной формы, в том числе многосегментных, позволяет обеспечить практически постоянную чувствительность по расстоянию, причем эта чувствительность на дальних расстояниях приблизительно на 60% выше, чем для простых линз Френеля. С помощью зеркальной оптики проще обеспечивается защита ближней зоны, расположенной непосредственно под местом установки датчика (так называемая антисаботажная зона). По аналогии со сменными линзами Френеля, ИК-датчики с зеркальной оптикой комплектуются сменными отстегивающимися зеркальными масками, применение которых позволяет выбирать требуемую форму зоны чувствительности и дает возможность адаптировать датчик к различным конфигурациям защищаемого помещения.

В современных высококачественных ИК-детекторах используется комбинация линз Френеля и зеркальной оптики. При этом линзы Френеля используются для формирования зоны чувствительности на средних расстояниях, а зеркальная оптика — для формирования антисаботажной зоны под датчиком и для обеспечения очень большого расстояния обнаружения.

Пироприемник:

Оптическая система фокусирует ИК излучение на пироприемнике, в качестве которого в ИК-датчиках используется сверхчувствительный полупроводниковый пироэлектрический преобразователь, способный зарегистрировать разницу в несколько десятых градуса между температурой тела человека и фона. Изменение температуры преобразуется в электрический сигнал, который после соответствующей обработки вызывает сигнал тревоги. В ИК-датчиках обычно используются сдвоенные (дифференциальные, DUAL) пироэлементы. Это связано с тем, что одиночный пироэлемент одинаковым образом реагирует на любое изменение температуры независимо от того, чем оно вызвано — человеческим телом или, например, обогревом помещения, что приводит к повышению частоты ложных срабатываний. В дифференциальной схеме производится вычитание сигнала одного пироэлемента из другого, что позволяет существенно подавить помехи, связанные с изменением температуры фона, а также заметно снизить влияние световых и электромагнитных помех. Сигнал от движущегося человека возникает на выходе сдвоенного пироэлемента только при пересечении человеком луча зоны чувствительности и представляет собой почти симметричный двухполярный сигнал, близкий по форме к периоду синусоиды. Сам луч для сдвоенного пироэлемента по этой причине расщепляется в горизонтальной плоскости на два. В последних моделях ИК-датчиков с целью дополнительного снижения частоты ложных срабатываний используются счетверенные пироэлементы (QUAD или DOUBLE DUAL) — это два сдвоенных пироприемника, расположенные в одном датчике (обычно размещаются один над другим). Радиусы наблюдения этих пироприемников делаются различными, и поэтому локальный тепловой источник ложных срабатываний не будет наблюдаться в обоих пироприемниках одновременно. При этом геометрия размещения пироприемников и схема их включения выбирается таким образом, чтобы сигналы от человека были противоположной полярности, а электромагнитные помехи вызывали сигналы в двух каналах одинаковой полярности, что приводит к подавлению и этого типа помех. Для счетверенных пироэлементов каждый луч расщепляется на четыре (см. рис.2), в связи с чем максимальное расстояние обнаружения при использовании одинаковой оптики уменьшается приблизительно вдвое, так как для надежного обнаружения человек должен своим ростом перекрывать оба луча от двух пироприемников. Повысить расстояние обнаружения для счетверенных пироэлементов позволяет использование прецизионной оптики, формирующей более узкий луч. Другой путь, позволяющий в некоторой степени исправить это положение — применение пироэлементов со сложной переплетенной геометрией, что использует в своих датчиках фирма PARADOX.

Блок обработки сигналов

Блок обработки сигналов пироприемника должен обеспечивать надежное распознавание полезного сигнала от движущегося человека на фоне помех. Для ИК-датчиков основными видами и источниками помех, могущими вызвать ложное срабатывание, являются:

    источники тепла, климатизационные и холодильные установки;
    конвенционное движение воздуха;
    солнечная радиация и искусственные источники света;
    электромагнитные и радиопомехи (транспорт с электродвигателями, электросварка, линии электропередачи, мощные радиопередатчики, электростатические разряды);
    сотрясения и вибрации;
    термическое напряжение линз;
    насекомые и мелкие животные.

Выделение блоком обработки полезного сигнала на фоне помех основано на анализе параметров сигнала на выходе пироприемника. Такими параметрами являются величина сигнала, его форма и длительность. Сигнал от человека, пересекающего луч зоны чувствительности ИК-датчика, представляет собой почти симметричный двухполярный сигнал, длительность которого зависит от скорости перемещения нарушителя, расстояния до датчика, ширины луча, и может составлять приблизительно 0,02…10 с при регистрируемом диапазоне скоростей перемещения 0,1…7 м/с. Помеховые сигналы в большинстве своем являются несимметричными или имеющими отличную от полезных сигналов длительность (см. рис. 3). Изображенные на рисунке сигналы носят очень приблизительный характер, в реальности все значительно сложнее.

Основным параметром, анализируемым всеми датчиками, является величина сигнала. В простейших датчиках этот регистрируемый параметр является единственным, и его анализ производится путем сравнения сигнала с некоторым порогом, который определяет чувствительность датчика и влияет на частоту ложных тревог. С целью повышения устойчивости к ложным тревогам в простых датчиках используется метод счета импульсов, когда подсчитывается, сколько раз сигнал превысил порог (то есть, по сути, сколько раз нарушитель пересек луч или сколько лучей он пересек). При этом тревога выдается не при первом превышении порога, а только если в течение определенного времени количество превышений становится больше заданной величины (обычно 2…4). Недостатком метода счета импульсов является ухудшение чувствительности, особенное заметное для датчиков с зоной чувствительности типа одиночного занавеса и ей подобной, когда нарушитель может пересечь только один луч. С другой стороны, при счете импульсов возможны ложные срабатывания от повторяющихся помех (например, электромагнитных или вибраций).

В более сложных датчиках блок обработки анализирует двухполярность и симметрию формы сигналов с выхода дифференциального пироприемника. Конкретная реализация такой обработки и используемая для ее обозначения терминология1 у разных фирм-производителей может быть различной. Суть обработки состоит в сравнении сигнала с двумя порогами (положительным и отрицательным) и, в ряде случаев, сравнении величины и длительности сигналов разной полярности. Возможна также комбинация этого метода с раздельным подсчетом превышений положительного и отрицательного порогов.

Анализ длительности сигналов может проводиться как прямым методом измерения времени, в течение которого сигнал превышает некоторый порог, так и в частотной области путем фильтрации сигнала с выхода пироприемника, в том числе с использованием «плавающего» порога, зависящего от диапазона частотного анализа.

Еще одним видом обработки, предназначенным для улучшения характеристик ИК-датчиков, является автоматическая термокомпенсация. В диапазоне температур окружающей среды 25°С…35°С чувствительность пироприемника снижается за счет уменьшения теплового контраста между телом человека и фоном, при дальнейшем повышении температуры чувствительность снова повышается, но «с противоположным знаком». В так называемых «обычных» схемах термокомпенсации осуществляется измерение температуры, и при ее повышении производится автоматическое увеличение усиления. При «настоящей» или «двухсторонней» компенсации учитывается повышение теплового контраста для температур выше 25°С…35°С. Использование автоматической термокомпенсации обеспечивает почти постоянную чувствительность ИК-датчика в широком диапазоне температур.

Перечисленные виды обработки могут проводиться аналоговыми, цифровыми или комбинированными средствами. В современных ИК-датчиках все шире начинают использоваться методы цифровой обработки с использованием специализированных микроконтроллеров с АЦП и сигнальных процессоров, что позволяет проводить детальную обработку тонкой структуры сигнала для лучшего выделения его на фоне помех. В последнее время появились сообщения о разработке полностью цифровых ИК-датчиков, вообще не использующих аналоговых элементов.
Как известно, вследствие случайного характера полезных и помеховых сигналов наилучшими являются алгоритмы обработки, основанные на теории статистических решений.

Другие элементы защиты ИК-извещателей

В ИК-датчиках, предназначенных для профессионального использования, применяются так называемые схемы антимаскинга. Суть проблемы состоит в том, что обычные ИК-датчик могут быть выведены нарушителем из строя путем предварительного (когда система не поставлена на охрану) заклеивания или закрашивания входного окна датчика. Для борьбы с этим способом обхода ИК-датчиков и используются схемы антимаскинга. Метод основывается на использовании специального канала ИК-излучения, срабатывающего при появлении маски или отражающей преграды на небольшом расстоянии от датчика (от 3 до 30 см). Схема антимаскинга работает непрерывно, пока система снята с охраны. Когда факт маскирования обнаруживается специальным детектором, сигнал об этом подается с датчика на контрольную панель, которая, однако, не выдает сигнала тревоги до тех пор, пока не придет время постановки системы на охрану. Именно в этот момент оператору и будет выдана информация о маскировании. Причем, если это маскирование было случайным (крупное насекомое, появление крупного объекта на некоторое время вблизи датчика и т.п.) и к моменту постановки на сигнализацию самоустранилось, сигнал тревоги не выдается.

Еще одним защитным элементом, которым оборудованы практически все современные ИК-детекторы, является контактный датчик вскрытия, сигнализирующий о попытке открывания или взлома корпуса датчика. Реле датчиков вскрытия и маскирования подключаются к отдельному шлейфу охраны.

Для устранения срабатываний ИК-датчика от мелких животных используются либо специальные линзы с зоной нечувствительности (Pet Alley) от уровня пола до высоты порядка 1 м, либо специальные методы обработки сигналов. Следует учитывать, что специальная обработка сигналов позволяет игнорировать животных только в том случае, если их общий вес не превышает 7…15 кг, и они могут приблизиться к датчику не ближе 2 м. Так что если в охраняемом помещении прыгучая кошка, то такая защита не поможет.

Для защиты от электромагнитных и радиопомех используется плотный поверхностный монтаж и металлическое экранирование.

Монтаж извещателей

Пассивные оптико-электронные ИК-извещатели имеют одно замечательное преимущество по сравнению с другими типами средств обнаружения. Это простота монтажа, настройки и технического обслуживания. Извещатели данного типа могут устанавливаться как на плоской поверхности несущей стены, так и в углу помещения. Существуют извещатели, которые размещаются на потолке.

Грамотный выбор и тактически верное применение таких извещателей являются залогом надежной работы устройства, да и всей системы охраны в целом!

При выборе типов и количества датчиков для обеспечения охраны конкретного объекта следует учитывать возможные пути и способы проникновения нарушителя, требуемый уровень надежности обнаружения; расходы на приобретение, монтаж и эксплуатацию датчиков; особенности объекта; тактико-технические характеристики датчиков. Особенностью ИК-пассивных датчиков является их универсальность — с их использованием возможно блокирование от подхода и проникновения самых разнообразных помещений, конструкций и предметов: окон, витрин, прилавков, дверей, стен, перекрытий, перегородок, сейфов и отдельных предметов, коридоров, объемов помещений. При этом в ряде случаев не потребуется большого количества датчиков для защиты каждой конструкции — может оказаться достаточным применения одного или нескольких датчиков с нужной конфигурацией зоны чувствительности. Остановимся на рассмотрении некоторых особенностей применения ИК-датчиков.

Общий принцип использования ИК-датчиков — лучи зоны чувствительности должны быть перпендикулярны предполагаемому направлению движения нарушителя. Место установки датчика следует выбирать так, чтобы минимизировать мертвые зоны, вызванные наличием в охраняемом помещении крупных предметов, перекрывающих лучи (например, мебель, комнатные растения). Если в помещении двери открываются внутрь, следует учитывать возможность маскировки нарушителя открытыми дверьми. При невозможности устранить мертвые зоны следует использовать несколько датчиков. При блокировке отдельных предметов датчик или датчики нужно устанавливать так, чтобы лучи зоны чувствительности блокировали все возможные подходы к защищаемым предметам.

Должен соблюдаться задаваемый в документации диапазон допустимых высот подвески (минимальная и максимальная высоты). В особенности это относится к диаграммам направленности с наклонными лучами: если высота подвески будет превышать максимально допустимую, то это приведет к уменьшению сигнала из дальней зоны и увеличению мертвой зоны перед датчиком, если же высота подвески будет меньше минимально допустимой, то это приведет к уменьшению дальности обнаружения с одновременным уменьшением мертвой зоны под датчиком.

1. Извещатели с объемной зоной обнаружения (рис. 3, а,б), как правило, устанавливаются в углу помещения на высоте 2,2–2,5 м. В этом случае они равномерно охватывают объем защищаемого помещения.

2. Размещение извещателей на потолке предпочтительнее в помещениях с высокими потолками от 2,4 до 3,6 м. Данные извещатели имеют более плотную зону обнаружения (рис. 3, в), а на их работу в меньшей степени влияют имеющиеся предметы мебели.

3. Извещатели с поверхностной зоной обнаружения (рис. 4) применяются для охраны периметра, например некапитальных стен, дверных или оконных проемов, а также могут использоваться для ограничения подхода к каким-либо ценностям. Зона обнаружения таких устройств должна быть направлена, как вариант, вдоль стены с проемами. Некоторые извещатели могут устанавливаться непосредственно над проемом.

4. Извещатели с линейной зоной обнаружения (рис. 5) применяются для охраны длинных и узких коридоров.

Как обмануть ИК-детектор

Изначальный недостаток ИК-пассивного метода обнаружения движения: человек должен явно отличаться по температуре от окружающих предметов. При температуре в комнате 36,6º никакой детектор не отличит человека от стен и мебели. Хуже того: чем ближе температура в комнате к 36,6º, тем хуже чувствительность детектора. Большинство современных устройств частично компенсируют этот эффект, повышая усиление при температурах от 30º до 45º (да, детекторы успешно работают и при обратном перепаде – если в комнате +60º, детектор легко обнаружит человека, благодаря системе терморегуляции человеческий организм сохранит температуру около 37º). Так вот при температуре на улице около 36º (что часто встречается в южных странах) детекторы очень плохо открывают двери, либо, наоборот, из-за предельно поднятой чувствительности реагируют на малейшее дуновение ветра.

Более того, от ИК-детектора легко загородиться любым предметом комнатной температуры (листом картона) или надеть толстую шубу и шапку, чтобы не высовывались руки и лицо, и, если ходить достаточно медленно, ИК-детектор не заметит столь маленьких и медленных возмущений.

В интернете ходят и более экзотические рекомендации, типа мощной ИК-лампы, которая, если ее медленно включить (обычным диммером), загонит ИК-детектор в зашкал, после чего перед ним даже без шубы можно ходить. Тут, правда, следует отметить, что хорошие ИК-детекторы в таком случае выдадут сигнал неисправности.

Наконец, наиболее известная проблема ИК-детекторов – маскирование. Когда система снята с охраны, днем в рабочие часы, вы как посетитель приходите в нужное помещение (в магазин, например) и, поймав момент, пока никто не смотрит, загораживаете ИК-детектор бумажкой, заклеиваете непрозрачной самоклеющейся пленкой или заливаете краской из баллончика. Особенно это удобно человеку, который сам там работает. Кладовщик днем аккуратно загородил детектор, ночью влез в окно, все вынес, а потом убрал все и вызвал милицию – ужас, обокрали, а сигнализация не сработала.

Для защиты от такого маскирования существуют следующие технические приемы.

    1. В совмещенных (ИК + микроволновый) датчиках есть возможность выдать сигнал неисправности, если микроволновый датчик обнаружил большой отраженный радиосигнал (кто-то подошел очень близко или протянул руку непосредственно к извещателю), а ИК-датчик при этом перестал выдавать сигналы. В большинстве случаев в реальной жизни это означает вовсе не злой умысел преступника, а халатность персонала – например, высокий штабель ящиков загородил извещатель. Впрочем, вне зависимости от злого умысла если извещатель загородили, это непорядок, и такой сигнал «неисправность» очень уместен.

    2. В некоторых приборах приемно-контрольных есть алгоритм контроля, когда после снятия извещателя с охраны он обнаруживает движение. То есть отсутствие сигнала считается неисправностью, пока кто-то не пройдет перед датчиком и он не выдаст нормальный сигнал «есть движение». Эта функция не очень удобна, ведь нередко снимают с охраны все помещения, даже те, в которые сегодня никто входить не собирается, а получится, что вечером, чтобы поставить помещения снова на охрану, придется зайти во все комнаты, где никого днем не было, и помахать руками перед датчиками – ППК убедится, что датчики работоспособны, и милостиво разрешит поставить систему на охрану.

    3. Наконец, есть функция под названием «ближняя зона», которая однажды была включена в требования отечественного ГОСТа и которую нередко ошибочно называют «антимаскинг». Суть идеи: у извещателя должен быть дополнительный датчик, глядящий прямо вниз, под извещатель, или отдельное зеркало, или специальная хитрая линза, в общем, чтобы не было мертвой зоны внизу. (Большинство извещателей имеют ограниченный угол обзора и в основном смотрят вперед и градусов 60 вниз, так что непосредственно под извещателем есть небольшая мертвая зона, на уровне пола примерно метр от стены.) Считается, что хитрый враг как-то сможет попасть в эту мертвую зону и оттуда загородить (замаскировать) линзу ИК-датчика, а потом уже нагло ходить по всей комнате. В реальности извещатель обычно устанавливают так, что в эту мертвую зону нет никакой возможности попасть, минуя области чувствительности датчика. Ну разве что сквозь стену, но против преступников, проникающих сквозь стену, не помогут дополнительные линзы.

Помехи и ложные срабатывания

При использовании пассивных оптико-электронных ИК-извещателей необходимо иметь в виду возможность ложных срабатываний, которые происходят из-за помех различного типа.

К ложным срабатываниям ИК-датчиков могут привести помехи теплового, светового, электромагнитного, вибрационного характера. Несмотря на то, что современные ИК-датчики имеют высокую степень защиты от указанных воздействий, все же целесообразно придерживаться следующих рекомендаций:

    для защиты от потоков воздуха и пыли не рекомендуется размещать датчик в непосредственной близости от источников воздушных потоков (вентиляция, открытое окно);
    следует избегать прямого попадания на датчик солнечных лучей и яркого света; при выборе места установки должна учитывается возможность засветки в течение непродолжительного времени рано утром или на закате, когда солнце низко над горизонтом, или засветки фарами проезжающего снаружи транспорта;
    на время постановки на охрану целесообразно отключать возможные источники мощных электромагнитных помех, в частности источники света не на основе ламп накаливания: люминесцентные, неоновые, ртутные, натриевые лампы;
    для снижения влияния вибраций целесообразно устанавливать датчик на капитальных или несущих конструкциях;
    не рекомендуется направлять датчик на источники тепла (радиатор, печь) и колеблющиеся предметы (растения, шторы), в сторону нахождения домашних животных.

Тепловые помехи – обусловлены нагреванием температурного фона при воздействии на него солнечного излучения, конвективных потоков воздуха от работы радиаторов систем отопления, кондиционеров, сквозняков.
Электромагнитные помехи – вызываются наводками от источников электро- и радиоизлучений на отдельные элементы электронной части извещателя.
Посторонние помехи – связаны с перемещением в зоне обнаружения извещателя мелких животных (собаки, кошки, птицы). Рассмотрим более детально все факторы, влияющие на нормальную работоспособность пассивных оптико-электронных ИК-извещателей.

Тепловые помехи

Это наиболее опасный фактор, который характеризуется изменением температурного фона окружающей среды. Воздействие солнечного излучения вызывает локальное повышение температуры отдельных участков стен помещения.

Конвективные помехи обусловлены воздействием перемещающихся потоков воздуха, например от сквозняков при открытой форточке, щелей в оконных проемах, а также при работе бытовых отопительных приборов – радиаторов и кондиционеров.

Электромагнитные помехи

Возникают при включении любых источников электро- и радиоизлучения, таких как измерительная и бытовая аппаратура, освещение, электродвигатели, радиопередающие устройства. Сильные помехи могут создаваться и от разрядов молний.

Посторонние помехи

Своеобразным источником помех в пассивных оптико-электронных ИК-извещателях могут являться мелкие насекомые, такие как тараканы, мухи, осы. В случае их перемещения непосредственно по линзе Френеля может возникнуть ложное срабатывание извещателя данного типа. Опасность представляют и так называемые домашние муравьи, которые могут попасть внутрь извещателя и ползать непосредственно по пироэлементу.

Пути совершенствования ИК-датчиков

Уже лет десять почти все охранные ИК-извещатели содержат достаточно мощный микропроцессор и потому стали менее подвержены воздействию случайных помех. Извещатели могут анализировать повторяемость и характерные параметры сигнала, долговременную стабильность фонового уровня сигнала, что позволило существенно повысить устойчивость к помехам.

ИК-датчики, в принципе, беззащитны против преступников за непрозрачными экранами, зато подвержены влиянию тепловых потоков от климатического оборудования и посторонней засветке (через окно). Микроволновые (радио) датчики движения, наоборот, способны выдавать ложные сигналы, обнаруживая движение за радиопрозрачными стенами, вне защищаемого помещения. Они также более подвержены влиянию радиопомех. Совмещенные ИК + микроволновые извещатели могут использоваться как по схеме «И», что значительно снижает вероятность ложных тревог, так и по схеме «ИЛИ» для особо ответственных помещений, что практически исключает возможность их преодоления.

ИК-датчики не могут отличить маленького человека от большой собаки. Существует ряд датчиков, в которых значительно снижена чувствительность к движениям небольших объектов за счет применения 4-площадочных сенсоров и специальных линз. Сигнал от высокого человека и от низкой собаки в таком случае можно с некоторой вероятностью различить. Надо хорошо понимать, что стопроцентно отличить пригнувшегося подростка от вставшего на задние лапы ротвейлера, в принципе, невозможно. Но тем не менее вероятность ложной тревоги может быть существенно снижена.

Несколько лет назад появились еще более сложные сенсоры – с 64 чувствительными площадками. Фактически это простой тепловизор с матрицей 8 х 8 элементов. Оснащенные мощным процессором, такие ИК-датчики способны определять размер и расстояние до движущейся теплой цели, скорость и направление ее движения – еще лет 10 назад такие сенсоры считались верхом технологии для самонаводящихся ракет, а теперь применяются для защиты от банальных воров.

Ошибки монтажа

Особое место в некорректной или неправильной работе пассивных оптико-электронных ИК-извещателей занимают ошибки монтажа при выполнении работ по установке данных типов устройств. Обратим внимание на яркие примеры неправильного размещения ИК-извещателей, чтобы избежать подобного на практике.

На рис. 6 а; 7 а и 8 а отображена правильная, корректная установка извещателей. Устанавливать их нужно только так и никак иначе!

На рисунках 6 б, в; 7 б, в и 8 б, в представлены варианты неправильной установки пассивных оптико-электронных ИК-извещателей. При такой установке возможны пропуски реальных вторжений в охраняемые помещения без выдачи сигнала «Тревога».

Не устанавливать пассивные оптико-электронные извещатели таким образом, чтобы на них попадали прямые или отраженные лучи солнечного света, а также свет фар проезжающих автотранспортных средств.
Не направлять зону обнаружения извещателя на нагревательные элементы систем отопления и кондиционирования помещения, на шторы и гардины, которые могут колебаться от сквозняков.
Не располагать пассивные оптико-электронные извещатели вблизи источников электромагнитного излучения.
Уплотнять все отверстия пассивного оптико-электронного ИК-извещателя герметиком из комплекта изделия.
Уничтожать насекомых, которые присутствуют в охраняемом помещении.

В настоящее время имеется огромное разнообразие средств обнаружения, отличающихся принципом действия, областью применения, конструкцией и эксплуатационными характеристиками.

Правильный выбор пассивного оптико-электронного ИК-извещателя и места его установки – залог надежной работы системы охранной сигнализации.

Скачать:
1. ИК-извещатели с помехозащитой от домашних животных — Пожалуйста или для доступа к этому контенту
2. Оптические средства обнаружения — Пожалуйста или

3.2. Пассивные инфракрасные детекторы движения

Для охраны внутренних помещений наибольшее распространение получили пассивные ИК детекторы движения. Они отличаются друг от друга, в основном, размером зоны обнаружения и помехоустойчивостью.

Принцип действия пассивных ИК детекторов основан на регистрации изменения интенсивности ИК излучения, возникающего при движении теплового объекта, например человека или собаки, в зоне обнаружения прибора. Чувствительным элементом такого прибора является пироэлемент (пироприемник), на поверхности которого под воздействием ИК излучения от любого теплового объекта возникает электрический заряд. Для регистрации факта движения теплового объекта в детекторе с помощью многосегментного зеркала формируется многолучевая диаграмма направленности, состоящая из множества лучей детекции, направленных под разными углами и в различных направлениях. Пересечение этих лучей тепловым объектом приводит к попаданию на пироэлемент импульсов ИК излучения и, как следствие, формирование последним электрических импульсов. Эти импульсы усиливаются и обрабатываются детектором, который подсчитывает их количество и временной интервал между ними. Значения этих параметров определяют

помехоустойчивость прибора и диапазон обнаруживаемых скоростей перемещающегося теплового объекта (от 3 м/с для быстро бегущего человека до 0, 3 м/с для очень медленного перемещения). Лучи детекции образуют зону обнаружения, которая определяет чувствительность прибора, т. е. максимальное расстояние, на котором еще происходит уверенное обнаружение перемещающегося объекта. Точные геометрические характеристики (конфигурация) зоны обнаружения обеспечиваются многосегментными зеркалами и оптической системой на линзах Френеля. Использование различных типов линз позволяет изменять конфигурацию зоны обнаружения в зависимости от обстановки. Благодаря этому детекторы движения имеют универсальное применение и используются для охраны объемов помещений, мест сосредоточения ценностей (музейных экспонатов, оргтехники и т. п.) и подходов к ним, коридоров, внутренних периметров, проходов между стеллажами, оконных и дверных проемов, полов и т. п. Оптическая система в зависимости от типа используемых линз позволяет получать зоны обнаружения следующих типов: объемную, поверхностную и узконаправленную.

Объемная зона (стандартная) формируется при использовании линз типа «широкий угол» и представляет собой сектор размером 90-110° с лучами детекции, образующими несколько дискретных зон обнаружения: дальнюю, промежуточную, ближнюю и нижнюю. Количество лучей детекции в этих зонах различное.

При использовании линз типа «горизонтальная занавеска» формируется поверхностная зона обнаружения. Такая зона имеет «мертвую» область (зона неуверенного обнаружения) до высоты 1 - 1, 2 м от уровня пола, что позволяет использовать детекторы с линзой типа «горизонтальная занавеска» в помещениях, где есть домашние животные.

Узконаправленная зона, формируемая линзой типа «вертикальная занавеска», позволяет использовать детекторы для охраны узких коридоров.

Для повышения обнаруживающей способности в некоторых детекторах используются датчики на основе двух или четырех пироэлементов. В данном случае луч детекции состоит из двух (четырех) элементарных лучей, а специальная схема включения чувствительных площадок пироприемника и способ обработки сигнала обеспечивают повышенную устойчивость прибора к засветкам, вызванным излучением осветительных приборов (ламп белого цвета) и солнца, воспринимаемым как помеха.

Детекторы хорошо защищены от воздействия электрических разрядов и электромагнитного излучения СВЧ диапазона, прочным металлическим корпусом, выполняющим роль экрана. Для визуального контроля работоспособности прибора и уровня помех в месте его установки используется светодиодная индикация. В некоторых типах детекторов имеется возможность дистанционного включения/выключения светодиодных индикаторов по шлейфу сигнализации.

При обнаружении движения, помех или при вскрытии прибора тревожное извещение может формироваться двумя способами: коротким замыканием (путем увеличения тока потребления) или разрывом (путем уменьшения тока потребления) шлейфа сигнализации. Выдача тревожного извещения производится путем замыкания/размыкания контактов выходных реле тревоги, вторжения и неисправности. Тревожное извещение выдается в течение нескольких секунд, т. к, детектор запоминает сигнал тревоги.

Иногда ИК детектор движения размещается в одном корпусе с детекторами других типов, например с детектором битого стекла. Это возможно благодаря использованию в детекторах движения метода пассивного инфракрасного обнаружения, не создающего помех и не оказывающего влияния на работу других приборов.

3.2.1. Детекторы движения серии XJ.

3.2.1. Детекторы движения серии XJ

Детектор движения XJ660T



Рис.3.5 Детектор движения XJ660T

Пассивный инфракрасный детектор XJ660T фирмы С&К Sysytem (IntelliSense) - это компактный, привлекательный и простой в монтаже прибор (рис. 3. 5). Он используется для охраны жилых и производственных помещений.

XJ660T - это пассивный инфракрасный детектор с зоной обнаружения размером 18х15 м. При изготовлении детектора используется запатентованная технология, практически исключающая возможный саботаж прибора.

Особенности детектора XJ660T:

> автоматический подсчет импульсов;

> комбинация многосегментного зеркала и линзы Френеля;

> регулировка характеристик зоны обнаружения в зависимости от высоты установки;

> температурная компенсация;

> устойчивость к белому свету;

> возможность использования линз различного типа.

Прибор комплектуется линзой типа «широкий

угол» (рис. 3. 6) или линзой типа «вертикальная

занавеска». Возможна установка линзы, обеспечивающей защиту от домашних животных, она исключает срабатывание прибора при движении объекта высотой менее 1 м.

Основные технические характеристики прибора XJ660T

Пассивный инфракрасный датчик................................ двойной пироэлемент

с регулируемой чувствительностью Размер зоны обнаружения, м......................................................... 18х15




Рис. 3. 6. Зоны обнаружения детектора XJ660T

Диапазон рабочих напряжений, В.................................................. 6-14

Выходные реле:

реле тревоги, мА/ В.............................................................. 100/30

реле вмешательства, мА/ В...................................................... 25 / 30

Устойчивость к белому свету на расстоянии 2, 4 м не менее, кд........ 20000

Диапазон рабочих температур, °С...................................... от -18 до+ 65

Габаритные размеры,мм........................................................ 130х70х60

Для увеличения зоны обнаружения детектора используется дополнительный поворотный кронштейн типа DT4SW. Благодаря прекрасному дизайну, прибор хорошо вписывается в интерьер квартиры или офиса. Детектор сертифицирован МВД России.

Детектор движения XJ413T

Надежное обнаружение, регулируемая чувствительность, компактный современный дизайн - все эти характеристики присущи пассивному инфракрасному детектору движения XJ413T фирмы С&К Systems (рис. 3. 7). Детектор предназначен для использования внутри жилых помещений и офисов. Он легко устанавливается на стене или в углу помещения (см. раздел 1. 4).



Рис.3.7.Детектор движения XJ413T

Особенности детектора XJ413T:

> размер зоны обнаружения 13х13 м;

> регулируемый счетчик импульсов;

> контроль нижней зоны;

> удобство монтажа;

> дополнительные линзы;

> малые габариты;

> датчик вмешательства;

> устойчив к белому свету;

> устойчив к радиопомехам.

Размер зоны обнаружения детектора определяется линзой «широкий угол» (рис. 3. 8) и составляет 13х13 м. Контроль нижней зоны осуществляется за счет большей плотности лучей, направленных вниз. Двойной пассивный инфракрасный элемент с дополнительной линзой типа "горизонтальная занавеска"

позволяет избежать ложных срабатывании прибора в помещениях с домашними животными. Путем изменения числа счетных импульсов детектор можно отрегулировать в соответствии с особенностями окружающей обстановки. В корпусе прибора находится датчик вмешательства (реле с нормально разомкнутыми контактами), формирующий сигнал тревоги при вскрытии корпуса детектора.

Основные технические характеристики прибора XJ413T:

Размер зоны обнаружения, м......................................................... 13х13

Потребляемый ток (при напряжении питания+ 12 В), мА...................... 20

Выходные реле:

реле тревоги, мА/В.............................................................. 100/24

Устойчивость к белому свету на расстоянии 3 м не менее, кд............ 20000

10-1000 МГц, В/м........................................................................... 30

Габаритные размеры, мм.......................................................... 73х57х40

Чувствительность прибора, нормальная или высокая, устанавливается перемычкой на плате. Зона обнаружения состоит из двойных лучей и имеет дальнюю (22 луча), промежуточную (7 лучей) и ближнюю (4 луча), а также нижнюю зоны (2 луча). Монтаж прибора осуществляется на стене или в углу помещения, возможна установка его на универсальном монтажном шарнире SMB-10.




Рис. 3. 8. Зоны обнаружения детектора XJ413T

Детектор движения XJ-450T

Рис. 3.9. Пассивный ИК детектор движения XJ450T


Пассивный инфракрасный детектор XJ450T фирмы С&К Systems выполнен в прочном пластиковом корпусе белого цвета (рис. 3. 9). Он обеспечивает надежное обнаружение движущихся объектов, излучающих тепло. Регулировка чувствительности и дальности действия позволяют быстро настраивать датчик под конкретные условия применения. Прибор предназначен для использования в жилых помещениях, офисах и на небольших предприятиях.

Особенности детектора XJ450T:

> регулируемая дальность обнаружения;

> контроль нижней зоны;

> регулируемая чувствительность;

> защита от насекомых;

> дополнительные линзы;

> светодиодная индикация срабатывания

Двойной пассивный инфракрасный элемент с дополнительной линзой типа «горизонтальная занавеска» (рис. 3. 10) позволяет избавиться от ложных срабатываний детектора при перемещении в охраняемой зоне домашних животных. С помощью специального алгоритма обработки сигналов исключаются потенциальные источники ложных




Рис. 3. 10. Зоны обнаружения прибора XJ450T

тревог, такие, например, как насекомые. Нижняя зона контролируется благодаря плотной многолучевой структуре диаграммы направленности. Возможность регулировки положения датчика детектора по вертикали позволяет корректировать размер зоны обнаружения прибора, что делает более гибким его применение. В зависимости от регулировки размер зоны обнаружения может быть 15х12 м или 10х12 м. Чувствительность детектора устанавливается перемычкой и имеет два уровня: нормальная и высокая.

Основные технические характеристики прибора XJ450T:

Размер зоны обнаружения, м......................................... 15х12 или 10х12

Напряжение питания, В.............................................................. 10- 14

Потребляемый ток (при напряжении питания+ 12 В), мА...................... 20

Выходные реле:

реле вмешательства, мА/ В...................................................... 25 / 24

реле тревоги, мА/ В.............................................................. 100 / 24

Устойчивость к белому свету на расстоянии 2, 4 м не более, кд.......... 20000

Устойчивость к радиопомехам в диапазоне частот

10-1000 МГц, В/м...........................................................................30

Диапазон рабочих температур, С.......................................... от 0 до+ 49

Детектор легко устанавливается на стене или в углу помещения. Зона обнаружения состоит из двойных лучей и имеет дальнюю (22 луча), промежуточную (6 лучей), ближнюю (3 луча), а также нижнюю (2 луча) зоны.

Путем изменения числа подсчитываемых импульсов можно отрегулировать чувствительность детектора в соответствии с особенностями окружающей обстановки. Для установки и настройки прибора можно применять монтажный шарнир SMB-10.

Детектор имеет сертификат качества для использования в России.

Детекторы движения МС-550/МС-550Т

Пассивные ИК детекторы МС-550/МС-550Т фирмы С&К (IntelliSense) предназначены для использования в закрытых помещениях. Это приборы высокой степени надежности, достигнутой за счет использования микропроцессора. Детекторы имеют режим самодиагностики, а также оборудованы индикатором режимов работы. Внешний вид приборов приведен на рис. 3. 9. Он такой же, как у детектора XJ405T.

Особенности детекторов МС-550/МС-550Т:

> использование двойного пироэлемента;

> плотная диаграмма направленности;

> микропроцессорная система обработки сигналов;

> автоматическая температурная компенсация;

> самодиагностика;

> регулировка чувствительности;

> защита от проникновения насекомых;

> режим проверки конфигурации охраняемой зоны.

Двойной пироэлемент и оптическая система позволяют получить зону обнаружения размером 15х12 м (рис. 3. 10) удвоенной плотностью лучей детекции. Детектор обладает устойчивостью к ложным срабатываниям при наличии в помещении любого количества кошек или других мелких животных такого же размера с общим весом не более 7 кг, а также любого количества произвольно летающих или находящихся в клетках птиц. Мыши и крысы тоже не влияют на работу детектора.

Автоматическая проверка работоспособности детектора производится ежечасно. При обнаружении неисправности тестирование повторяется через каждые 5 минут. Ошибки при выполнении теста индицируются мигающим светодиодом. В случае успешного завершения самотестирования, проводимого автоматически после подачи питания, или при запуске режима самодиагностики пользователем детектор переходит в 10-минутный режим проверки конфигурации охраняемой зоны. В этом режиме можно определить точную конфигурацию охраняемой зоны, выполнив тест-проход, - каждый раз при пересечении края одного из лучей детекции будет включаться светодиод.

Основные технические характеристики приборов МС-550/МС-550Т:

Напряжение питания, В.............................................................. 10-14

Потребляемый ток (при напряжении питания+ 12 В), мА...................... 20

Выходные реле:

реле вмешательства, мА/В...................................................... 25/24

Реле тревоги, мА/В.............................................................. 100/24

Устойчивость к белому свету, лк..................................................... 6500

Устойчивость к радиопомехам в диапазоне

частот 10-1000 МГц, В/м................................................................. 30

Диапазон рабочих температур, С.......................................... от 0 до+ 40

Габаритные размеры, мм.......................................................... 90х44х45

Масса, г............................................................................................ 85

Детектор позволяет регулировать чувствительность с помощью перемычек на монтажной плате прибора. Возможны три уровня чувствительности: высокая, нормальная и низкая.

Детектор может устанавливаться на стене или в углу помещения на высоте 1, 2, 2, 3 или 3 м от пола. При этом следует помнить, что охраняемая зона должна находиться в пределах прямой видимости детектора.

Рис. 3.10. Зоны обнаружения прибора XJ450T

Изображение:

Рис. 3.6. Зоны обнаружения детектора XJ660T

Изображение:

Изображение:

Рис. 3.8. Зоны обнаружения детектора XJ413T

Изображение:

Рис.3.5 Детектор движения XJ660T

Изображение:

Рис.3.7. Детектор движения XJ413T

Изображение:

3.2.2. Детектор движения PIR700E.

3.2.2. Детектор движения PIR700E

Пассивный инфракрасный детектор PIR700E предназначен для установки в помещениях площадью до 200 м2. Устанавливается он на стену или в углу помещения. Работа детектора основана на использовании двойного пироэлемента. Конструктивные особенности детектора позволяют применять его в жилых помещениях, где есть домашние животные. Особенности детектора PIR700E:

> эффективная защита от ложных срабатываний, вызванных радиопомехами;

> регулировка размеров зоны обнаружения в вертикальной и горизонтальных плоскостях;

> двойной пироэлемент;

> защита от вскрытия;

> высокая чувствительность;

> небольшие габариты;

> фильтрация питающего напряжения от сетевых помех;

> возможность установки в углу помещения.

Для работы детектора рекомендуется использовать источник бесперебойного питания. При использовании линзы «широкий угол» (рис. 3. 11) и установке на высоте 1, 8 м детектор позволяет контролировать территорию размером 15х15 м. Применение дополнительных линз позволяет скорректировать диаграмму направленности датчика (рис. 3. 11). Использование линзы Lens 817 типа «горизонтальная занавеска» имеет смысл лишь в том случае, когда детектор устанавливается в помещении, где есть домашние животные. Использование линзы Lens 818 типа «вертикальная занавеска» оправдано, когда прибор устанавливается в узком коридоре.




Рис. 3. 11. Зоны обнаружения прибора PIR700E

Основные технические характеристики детектора PIR700E:

Размеры зоны обнаружения, м.................................................. 15, 2х15, 2

Напряжение питания, В............................................................ 10, 6-16

Потребляемый ток (при напряжении питания+ 12 В), мА...................... 23

Максимальная высота установки, м.................................................... 3, 6

Реле тревоги, мА/В.................................................................. 100/24

Выход детектора.............................. нормально замкнутые контакты реле

Время включения реле не более, с........................................................ 3

Диапазон рабочих температур, С...................................... от -10 до+ 50

Габаритные размеры, мм......................................................... 114х64х43

Масса, г.......................................................................................... 198

Установка детектора производится на стену или в угол помещения, максимальная высота установки - 3, 6 м. Датчик переходит в режим охраны не ранее чем через 3 минуты после подачи питания. Данный режим индицируется загоранием светодиодного индикатора прибора. Для отключения светодиода необходимо удалить перемычку на плате прибора. При монтаже детектора не рекомендуется располагать его вблизи источников тепла, таких как радиаторы отоллйния, обогревателя, лампы накаливания и т.п..

Рис. 3.11. Зоны обнаружения прибора PIR700E

Изображение:

3.2.3. Наружный детектор движения LX-2AU.

3. 2. 3. Наружный детектор движения LX-2AU

Пассивный инфракрасный детектор LX-2AU компании Optex - это прибор, специально разработанный для наружного использования. Детектор обеспечивает стабильность размеров зоны обнаружения в самых жестких климатических условиях, таких как снег, дождь, туман и т. п.

Особенности детектора LX-2AU:

> автоматическая стабилизация размеров зоны обнаружения в любых усло виях окружающей среды;

> двойной пироэлемент датчик высокой чувствительности;

> сбалансированная температурная компенсация;

> три уровня чувствительности;

> регулировка чувствительности;

> встроенный светодиодный индикатор режима работы;

> возможность регулировки положения датчика в вертикальной и горизон тальной плоскости;

> оперативное изменение размеров зоны обнаружения.

Датчик устойчив к воздействию прямых солнечных лучей и света автомобильных фар. Специальный алгоритм обработки сигнала позволяет ему адаптироваться к изменяющимся условиям окружающей среды. Основные технические характеристики прибора LX-2AU:

Размер зоны обнаружения, м......................................................... 12х14

Угол обзора, град............................................................................ 120

Регистрируемая скорость перемещения, м/с......................... от 0, 3 до 1, 0

Регулировка:

в вертикальной плоскости, град.................................................... ±45

в горизонтальной плоскости, град.............................................. 0 - 20

Выходное реле, мА/В............................................................... 100/24

Количество уровней чувствительности.................................................. 3

Диапазон рабочих температур, °С...................................... от -20 до+ 50

Встроенный фотодиод позволяет осуществлять автоматическое отключение датчика при определенном уровне освещенности, как правило в светлое время суток. Уровень освещенности, при котором происходит это отключение, регулируется.

Датчик удобен в эксплуатации и при установке. Потолочные и настенные кронштейны позволяют регулировать положение датчика в вертикальной и горизонтальной плоскости.

3.2.4. Детекторы движения "Фотон".

3. 2. 4. Детекторы движения «Фотон»

Пассивные инфракрасные детекторы «Фотон-6» и «Фотон-8»

Охранные пассивные инфракрасные детекторы «Фотон-6» и "Фотон-8" разработаны и производятся в России. Они предназначены для работы в составе пультов контроля, таких как « Сигнал- 37А», «Сигнал-40», «Сигнал-45 », а так же в системах «Фобос», «Нева-10М», «Комета-К».

Питание приборов осуществляется по шлейфу сигнализации. В качестве датчика используется двойной пироэлемент. Благодаря применению трех типов


линз детекторы имеют три зоны обнаружения. Корпус приборов имеет современный дизайн (рис. 3. 12), что позволяет им хорошо вписываться в интерьер любого помещения.

Особенности детекторов типа «Фотон»:

> высокая обнаруживающая способность;

> высокая устойчивость к электромагнитным, тепловым и световым помехам;

> два способа формирования тревожного извещения;

> быстрый выход на рабочий режим;

> визуальный контроль работоспособности прибора;

> контроль напряжения питания;

> питание по шлейфу сигнализации;

> широкие возможности при установке.

Высокая обнаруживающая способность детекторов обеспечивается благодаря использованию трех зон обнаружения: объемной, поверхностной и линейной (рис. 3: 13). Это позволяет использовать их для охраны помещений практически любой конфигурации.




Рис. 3. 13. Зоны обнаружения детектора «Фотон-6»

Основные технические характеристики детекторов «Фотон»:

Контролируемая площадь с объемной зоной обнаружения, м2............... 120

Регистрируемая скорость перемещения, м/с............................... 0, 3-3, 0

Потребляемый ток:

«Фотон-6», мА............................................................................. 15

« Фотон-8», мА.............................................................................. 1

Диапазон рабочих температур:

«Фотон-6», °С............................................................. от -30 до+ 50

"Фотон-8", °С............................................................. от -10 до+ 50

Габаритные размеры, мм....................................................... 107х107х64

Масса, кг....................................................................................... 0, 25

Детектор движения «Фотон-СК»

Охранный объемный оптико-электронный детектор движения «Фотон-СК» (рис. 3. 14) производится в России. Он разработан совместно с американской фирмой С&К Systems по заказу Главного управления вневедомственной охраны МВД России. Датчик рекомендуется использовать для установки в жилых помещениях, офисах и на небольших предприятиях.


Особенности детектора «Фотон-СК»:

> отключение светодиодного индикатора в режиме охраны;

> защита от несанкционированного вскрытия;

> высокая помехоустойчивость;

> защита от домашних животных;

> минимальное количество комплектующих элементов;

> возможность установки на стене или в углу помещения.

В настоящее время прибор «Фотон-СК» является одним из самых дешевых детекторов движения на российском рынке. При производстве прибора используется современное технологическое оборудование для поверхностного монтажа фирмы Universal Instruments Corporation, что дает возможность получить очень высокие характеристики прибора.

Детектор имеет пять зон обнаружения и перекрывает территорию размером 15х12 м

(рис. 3.15). Цифровая обработка сигнала позволяет исключить срабатывание датчика от пролетающих насекомых. Дополнительная линза позволяет ограничить зону обнаружения снизу до определенной высоты, обеспечивая тем самым защиту от домашних животных.




Рис. 3. 15. Зоны обнаружения прибора «Фотон-СК»

Основные технические характеристики прибора «Фотон-СК»:

Размер зоны обнаружения, м......................................................... 15х12

Напряжение питания, В.............................................................. 10-14

Потребляемый ток, мА....................................................................... 20

Диапазон рабочих температур, °С...................................... от -18 до+ 49

Габаритные размеры, мм.......................................................... 90х64х41

Масса, г............................................................................................ 85

"Фотон-СК" - это один из лучших детекторов, выпускаемых отечественной промышленностью. Он обладает наивысшим показателем качество/цена.

Рис. 3.12. Детектор движения "Фотон-СК"

Изображение:

Рис. 3.12. Детекторы движения «Фотон-6» и «Фотон-8»

Изображение:

Рис. 3.13. Зоны обнаружения детектора «Фотон-6»

Изображение:

Рис. 3.15. Зоны обнаружения прибора «Фотон-СК»

Изображение:

3.2.5. Детектор движения МРС 4040Т.

3. 2. 5. Детектор движения МРС 4040Т

Пассивный инфракрасный детектор МРС 4040Т с двойным чувствительным датчиком производства компании IntelliSense - это экономичный прибор с размером зоны обнаружения 12х15 м (рис. 3. 16). В нем используется запатентованная технология С&К, а также комбинация сегментного зеркала и линзы Френеля, что практически исключает возможный саботаж прибора.

Особенности детектора МРС 4040Т:

> температурная компенсация;

> регулировка чувствительности;

> регулировка зоны обнаружения в зависимости от высоты установки;

> устойчивость к белому свету;

> дополнительный поворотный кронштейн.






Рис. 3. 17. Зоны обнаружения прибора МРС4040Т

В приборе используется двойной пироэлемент с регулируемой чувствительностью. При использовании линзы «широкий угол» (рис. 3. 17) площадь, контролируемая прибором, составит 144 м2 (12х12 м). Возможна установка линзы «вертикальная занавеска», которая обеспечивает узкую охраняемую зону длиной до 18 м. Линза «горизонтальная занавеска» для защиты от домашних животных исключает срабатывание детектора при возникновении движения в зоне, высота которой ниже 1, 2 м. Это обеспечивается как при использовании широкой, так и узкой диаграммы направленности.

Основные технические характеристики прибора МРС4040Т:

Размер зоны обнаружения, м......................................................... 12х 12

Устойчивость к радиопомехам на расстоянии 3 м

в диапазоне 20-100 МГц, Вт........................................................... 100

Устойчивость к белому свету на расстоянии 2, 4 м не менее, кд......... 20000

Напряжение питания, В................................................................ 8-14

Потребляемый ток (при напряжении питания+ 12 В), мА...................... 20

Выходные реле:

реле тревоги, мА, В.............................................................. 100/30

Диапазон рабочих температур, С...................................... от -18 до+ 65

Габаритные размеры, мм.......................................................... 92х60х50

Масса, г............................................................................................ 71

Датчик устанавливается на стену или в углу помещения. Для установки может использоваться дополнительный поворотный кронштейн типа DT4SW. Детектор предназначен для охраны закрытых помещений. Высокое качество и умеренная цена прибора - это как раз то, что делает его конкурентно способным на отечественном рынке технических средств охраны.

Пассивные инфракрасные детекторы движения серии IQ200 компании IntelliSense используют комбинацию четырех пироэлементов с регулируемой чувствительностью. Приборы (рис. 3.18) предназначены для организации охраны и установки в жилых помещениях, офисах и на небольших предприятиях. Детектор IQ220T имеет радиус действия 12 м, а детектор IQ260T -18м. Особенности детекторов серии 10200:

> возможность регулировки размеров зоны обнаружения;

> светодиодная индикация режима работы;

> устойчивость к радиопомехам;

> устойчивость к белому свету;

> температурная компенсация.

В модели IQ220T реализована запатентованная технология С&К, благодаря которой практически полностью исключены ложные срабатывания системы. Многосегментное зеркало и линза Френеля обеспечивают зону обнаружения площадью около 200 м2. С помощью набора линз можно получить необходимую диаграмму направленности детектора (рис. 3.19). Прибор может оснащаться линзой «горизонтальная занавеска» для защиты от ложной тревоги, вызванной домашними животными. Детектор содержит два двойных пироэлемента с регулируемой чувствительностью.

Основные технические характеристики приборов серии IQ200:

Размер зоны обнаружения:

IQ220T,M................................................................................ 12х12

IQ260T, м................................................................................ 18х15

Устойчивость к радиопомехам на расстоянии 3 м

в диапазоне 27-1000 МГц, Вт.......................................................... 100

Устойчивость к белому свету на расстоянии 2,4 м, кд....................... 20000

Напряжение питания, В.............................................................. 10-14

Потребляемый ток (при напряжении питания +12 В), мА......................30

Выходные реле:

реле тревоги, мА/В.............................................................. 100/30

реле вмешательства, мА/ В...................................................... 25/30

Диапазон рабочих температур, °С...................................... от -18 до +65

Габаритные размеры, мм........................................................ 130х70х60

Масса, г.......................................................................................... 227


3.2.7. Потолочный детектор FIR5030.

3. 2. 7. Потолочный детектор FIR5030

Детектор движения FIR5030 компании С&К (IntelliSense) - это два самостоятельных прибора в одном корпусе: пассивный инфракрасный детектор и детектор битого стекла. FIR5030 имеет круговую диаграмму направленности и предназначен для установки на потолке охраняемого помещения. Он имеет современный дизайн (рис. 3. 20) и высокие эксплуатационные характеристики, что делает его прекрасным средством для охраны помещений, например небольших магазинов со стеклянным фасадом или офисов. Особенности детектора FIR5030:

> возможность монтажа заподлицо с поверхностью потолка и на подвесном потолке;

> два выходных реле в одном корпусе (для каждого детектора свое);

> регулируемая высота монтажа;

> регулировка чувствительности;

> светодиодный индикатор режима работы;

> запоминание сигнала тревоги.


В состав прибора входит пассивный инфракрасный (ПИК) детектор с круговой диаграммой направленности на основе пироэлемента с регулируемой чувствительностью. Он предназначен для обнаружения несанкционированного входа в помещение. В нем может быть использовано одно из двух взаимозаменяемых зеркал, применение которых определяется высотой установки прибора и необходимым количеством лучей детекции (рис. 3. 21).

При установке зеркала. № 1 высота монтажа должна составлять от 2, 5 до 3, 5 м от пола. При этом диаграмма направленности будет состоять из 77 лучей детекции различной длины.

При установке зеркала №2 высота установки должна быть 3, 5-4, 9 м. Число лучей детекции при этом уменьшается до 61.

Второй детектор прибора - это детектор битого стекла (ДБС)Flex Guard

с радиусом действия до 9 м, предназначенный для регистрации факта разбивания стекла и формирования сигнала тревоги. Принцип действия детектора основан

на анализе спектра звукового сигнала, возникающего при ударе о стекло

и при его разбивании. Для формирования сигнала тревоги прибор должен

зарегистрировать удар о стекло и звон разбиваемого стекла, причем интервал

между обоими звуками должен быть не более 150 мс. Это исключает возможность ложного срабатывания. Радиус действия детектора битого стекла зависит от сорта, толщины и размера стекла. Поэтому для настройки прибора необходимо использовать специальный имитатор разбивания стекла FlexGuard 700. .

Технические характеристики детектора FIR5030:

Радиус зоны обнаружения ПИК детектора, м.......................................15

Число лучей детекции не менее..........................................................61

Высота установки, м........................................................... от 2,5 до 4,9

Радиус обнаружения ДБС не более, м.................................................. 9

Сорт стекла................................................ металлизированное, слоистое

закаленное, усиленное Толщина стекла, мм....................................................................... 4 - 7

Размер стекла не менее, мм....................................................... 270х270

Напряжение питания, В............................................................ 8,5-1,6

Потребляемый ток (при напряжении питания +12 В), мА......................40

Выходные реле:

реле тревоги ПИК детектора, мА/В....................................... 500/30

реле тревоги ДБС, мА/В....................................................... 500/30

реле вмешательства, мА/ В...................................................... 25 /30




Рис. 3. 21. Зоны обнаружения детектора FIR5030

Прибор может быть установлен на поверхности потолка или заподлицо с ней. Высота монтажа регулируется с помощью дополнительного зеркала. В приборе предусмотрена возможность регулировки чувствительности ПИК детектора и ДБС и запоминание сигнала тревоги.

Для целей охраны имущества используется большая номенклатура разнообразных технических средств, среди которых особое место занимают охранные извещатели.

Охранные извещатели - это своего рода «чувствительные рецепторы» системы охранной сигнализации, которые призваны обнаружить преступника в охраняемом помещении, сформировать сигнал тревоги и передать его в охранную систему для принятия мер реагирования.

От того, какие извещатели используются в системе охраны офиса или квартиры, напрямую зависит безопасность имущества клиента, а в отдельных случаях - безопасность его жизни и здоровья.

Действие извещателей основано на использовании различных физических принципов. Можно выделить 2 основных типа извещателей:

1. Пассивные извещатели, которые сами не являются источниками волн различной физической природы (электромагнитных, акустических, пр.).

2. Активные извещатели, являющиеся источниками таких волн.

Очевидные преимущества пассивных извещателей - это их экологическая чистота и низкое энергопотребление. Однако в ряде случаев, в частности для повышения достоверности формируемого извещателем сигнала тревоги и минимизации числа ложных срабатываний, используют извещатели второго типа. При этом в современных извещателях, как правило, активный и пассивный способ работы совмещаются в одном приборе.

По физическому принципу действия извещатели можно подразделить на следующие группы.

Инфракрасные - извещатели, которые обнаруживают тепловое (инфракрасное) излучение человеческого тела и формируют сигнал тревоги в случае, когда источник теплового излучения движется.

Ультразвуковые - извещатели, излучающие ультразвуковые колебания и принимающие сигнал, отраженный от окружающих предметов. Формирование тревожного сигнала происходит в случае возникновения движения в контролируемой зоне.

Радиоволновые - извещатели, излучающие в диапазоне ультракоротких радиоволн. Их принцип работы аналогичен принципу ультразвуковых извещателей.

Барометрические - извещатели, формирующие сигнал тревоги при скачкообразном падении атмосферного давления в охраняемом помещении, которое может произойти в случае открытия двери или окна.

Акустические - извещатели, формирующие сигнал тревоги при регистрации в охраняемой зоне характеристического звука. Чаще всего это звук разбития оконного стекла.

Сейсмические - извещатели, устанавливаемые на стену или другую конструкцию и формирующие сигнал тревоги в случае регистрации в этой конструкции характеристических колебаний, возникающих при попытке разрушения преграды известными способами и инструментами (отбойный молоток, абразивный инструмент, газовый резак, «кислородное копье», взрывчатка, т.п.).

Инерционные - извещатели, в которых сигнал тревоги формируется с использованием инерционных свойств предметов и как правило при механическом воздействии на охраняемый объект, например автомобиль (покачивание, толчки). К группе инерционных относятся вибрационные и ударноконтактные извещатели.

Пьезоэлектрические - различные извещатели, использующие в своей работе пьезоэлектрические материалы, которые обладают свойством наведения разности потенциалов на противоположных сторонах пьезоэлектрического кристалла при его деформации. К пьезоэлектрическим относятся контактные извещатели контроля разбития стекла, извещатели контроля неподвижности установленных (скульптура) или подвешенных (картины) предметов и т.д.

Магнитоконтактные - извещатели, формирующие сигнал тревоги при размыкании геркона вследствие удаления от него магнитного элемента.

Устанавливаются как правило на окна и входные двери.

Электроконтактные - извещатели, которые формируют сигнал тревоги при размыкании электрического контакта. В настоящее время используются как правило в системах тревожной сигнализации и работают в ручном режиме.

Комбинированные - извещатели, которые сочетают в себе два или более физических принципа действия (инфракрасный и ультразвуковой, инфракрасный и радиоволновой, акустический и магнитоконтактный и пр.). Использование двух физических принципов действия зачастую позволяет повысить помехозащищенность извещателя, исключить ложные срабатывания.

Ультразвуковые и радиоволновые извещатели относятся к активному, а все остальные - к пассивному типу извещателей.

Кроме указанных существуют извещатели, использующие иные физические принципы действия: емкостные, индуктивные, электромагнитные и пр.

К изложенному необходимо добавить, что инфракрасные и радиоволновые извещатели могут быть однопозиционными (для контроля движения в определенном объеме) и двухпозиционными (для контроля движения через ограждение). Двухпозиционные извещатели состоят из конструктивно обособленных передатчика и приемника электромагнитных волн и используются для охраны периметров; формирование тревожного сигнала в них происходит при пересечении человеком инфракрасного или радиолуча. В данном случае мы имеем дело с активным инфракрасным извещателем.

В настоящей статье будут рассмотрены принцип работы и конструктивные особенности пассивных инфракрасных извещателей, которые по праву пользуются большой популярностью у потребителей и являются наиболее распространенными.

Пассивные инфракрасные извещатели предназначены для обнаружения человека, находящегося в пределах зоны чувствительности. Основная задача извещателя - обнаружить инфракрасное излучение человеческого тела. Как видно из рисунка 1, тепловое излучение человеческого тела находится в пределах спектрального диапазона электромагнитного излучения с длинами волн 8-12 микрон. Это так называемое равновесное свечение человеческого тела, максимум длины излучения которого полностью определяется температурой и для 37°С соответствует приблизительно 10 микронам. Существует целый ряд физических принципов и соответствующих устройств, которые применяются для регистрации излучения в указанном спектральном диапазоне. Для пассивных инфракрасных извещателей следует использовать чувствительный элемент с оптимальным соотношением чувствительность/стоимость. Таким чувствительным элементом является пироэлектрический фотоэлемент.


Рис. 1. Спектральная зависимость интенсивности свечения: солнца, флюоресцентной лампы, лампы накаливания, человеческого тела и спектра пропускания ряда блокирующих видимый свет фильтров: кремниевый фильтр, просветленный кремниевый фильтр, фильтр с длиной волны среза 5 мкм и фильтр с длиной волны среза 7 мкм.

Явление пироэлектричества состоит в возникновении наведенной разности потенциалов на противоположных сторонах пироэлектрического кристалла при его неравновесном кратковременном нагревании. Со временем электрические заряды из внешних электрических цепей и перераспределение зарядов внутри кристалла приводят к релаксации наведенного потенциала. Из вышесказанного следует:

частота прерывания (Гц).



Рис. 2. Зависимость величины сигнала отклика пироэлемента от частоты прерывания регистрируемого теплового ИК-сигнала.

1. Для эффективной пироэлектрической регистрации теплового излучения необходимо применять прерыватель с оптимальной частотой прерывания излучения около 0,1 Гц (рис. 2). С другой стороны это означает, что если используется безлинзовая конструкция пироэлектрического элемента, он сможет зарегистрировать человека лишь при его входе в пределы диаграммы направленности (рис. 3, 4) и при выходе из нее со скоростью 1 - 10 сантиметров в секунду.



Рис. 3, 4. Форма диаграммы направленности спаренного корпусированного пироэлектрического элемента в горизонтальной (Рис. 3.) и вертикальной (Рис. 4.) плоскостях.

2. Для повышения чувствительности пироэлектрического элемента к величине перепада температур (разница между фоновой температурой и температурой тела человека) необходимо сконструировать его, выдержав минимально возможные размеры, с целью уменьшения количества тепла, необходимого для заданного повышения температуры чувствительного элемента. Размеры чувствительного элемента нельзя чрезмерно уменьшать, так как это приведет к ускорению релаксационных характеристик, что эквивалентно уменьшению чувствительности. Существует оптимальный размер. Минимальная чувствительность обычно находится на уровне 0,1°С для пироэлемента размером 1 х 2 мм и толщиной несколько микрон.

3. Для повышения термостабильности работы извещателя и отсечки влияния медленно меняющейся температуры окружающей среды чувствительный элемент изготавливается в виде парной конструкции электрически встречно включенных элементов, расположенных на общей подложке. Внешний вид чувствительного пироэлемента приведен на рис. 5. Как видно из рисунка, чувствительный элемент изготавливается в типовом корпусе обычного полупроводникового электронного элемента. В корпусе формируется окно из материала, не пропускающего извне излучения с длиной волны менее 1 - 7 микрон в зависимости от типа используемого фильтрующего материала (см. рис. 1). Мировым лидером по производству пироэлектрических элементов является фирма HAMAMATSU (Япония). В Украине пироэлементы производит СКТБ Института физики НАН Украины.


Рис. 5. Внешний вид чувствительного элемента пироэлектрического пассивного ИК-извещателя.

Можно четко сформулировать условия обнаружения человека с помощью инфракрасного извещателя. Инфракрасный извещатель предназначен для обнаружения движущихся объектов с температурой, отличной от фонового значения. Диапазон регистрируемых скоростей перемещения: 0,1 - 1,5 м/сек. Таким образом инфракрасный извещатель не регистрирует неподвижные объекты, даже если их температура превышает уровень фона (неподвижный человек) или если объект с температурой, отличной от фона, перемещается таким образом, что не пересекает чувствительных зон извещателя (например перемещается вдоль чувствительной зоны).

Естественно, что высокая чувствительность инфракрасного извещателя достигается путем применения линзовой системы концентрации входящего излучения (рис. 6). В инфракрасном извещателе линзовая система выполняет две функции.



Рис. 6. Варианты формирования диаграммы направленности ИК-извещателей в зависимости от типа линзовой системы.

Во-первых, линзовая система служит для фокусировки излучения на пироэлектрическом элементе.

Во-вторых, она предназначена для пространственного структурирования чувствительности извещателя. При этом формируются пространственные зоны чувствительности, которые как правило имеют форму «лепестков», а их количество достигает нескольких десятков. Объект обнаруживается при каждом входе и выходе из чувствительных зон.

Обычно различают следующие виды диаграммы чувствительности, которую называют также диаграммой направленности.

1). Стандартная - веерная по азимуту и многоярусная по углу места (рис. 6а).

2). Узконаправленная - одно- или двухлучевая дальнодействующая по азимуту и многоярусная по углу места (рис. 6б).

3). Штороподобная - узконаправленная по азимуту и веероподобная по углу места (рис. 6в).

Существует также круговая диаграмма направленности (в частности, для извещателей, устанавливаемых на потолке помещения), а также ряд других.

Рассмотрим варианты конструктивного исполнения системы формирования диаграммы направленности (рис. 7). Эта оптическая система может быть либо линзовой, либо зеркальной. Изготовление обычной линзовой системы с учетом требования формирования пространственно структурированной диаграммы направленности является дорогостоящей задачей, поэтому обычные линзы в пассивных инфракрасных датчиках не применяются. Применяются так называемые линзы Френеля. В обычной линзе для направленного отклонения света (фокусировки) используется специальная сферическая форма поверхности, материал линзы имеет коэффициент оптического преломления, отличный от коэффициента преломления окружающей среды. В линзе Френеля используется явление дифракции, которое проявляется в частности в отклонении светового луча при прохождении через узкую щель. Линза Френеля изготавливается методом штамповки и поэтому стоит дешево. Недостатком применения линзы Френеля является неизбежная потеря половины энергии излучения в результате его дифракционного отклонения линзой в направлении, отличном от направления на пироэлектрический элемент.


Рис. 7. Конструктивные варианты исполнения охранных пассивных ИК-извещателей: с линзой Френеля и с зеркальной фокусирующей системой.

Зеркальная линза более эффективна по сравнению с линзой Френеля. Она изготавливается из пластической массы методом штамповки с последующим покрытием структурированной поверхности светоотражающим покрытием, не изменяющим своих свойств со временем (до 10 лет). Наилучшим покрытием является золото. Отсюда и более высокая, приблизительно в два раза, стоимость пассивных инфракрасных извещателей с зеркальной системой по сравнению с линзовой. Кроме того извещатели с зеркальной системой имеют большие габариты по сравнению с извещателями, оснащенными линзами Френеля.

Зачем применяют более дорогие извещатели с зеркальной системой концентрации входящего излучения? Важнейшей характеристикой извещателя является его чувствительность. Чувствительность практически одинакова в перерасчете на единицу площади входного окна извещателя. Это, в частности, означает, что если проектируют пассивный инфракрасный извещатель с повышенной чувствительностью, то вынуждены увеличивать размер зоны концентрации излучения - площадь входного окна, а, значит, и сам извещатель (максимальная чувствительность современных пассивных ИК-извещателей позволяет производить обнаружение человека на расстоянии до 100 метров). Если положить наличие потерь полезного сигнала за счет несовершенства линзы, то необходимо повысить коэффициент усиления электронной схемы обработки электрического сигнала, формируемого чувствительным элементом. При условии одинаковой чувствительности коэффициент усиления электрической схемы в зеркальном извещателе в два раза меньше, чем в извещателе с линзой Френеля. Это обозначает, что в извещателях с линзой Френеля выше вероятность ложного срабатывания, вызванная помехами в электронной схеме.

Еще раз вернемся к оптической схеме извещателя. Кроме линзовой системы и оптического «отрезающего» фильтра, установленного непосредственно в корпусе чувствительного элемента, для уменьшения ложных срабатываний, вызванных всевозможными источниками излучения, применяют различные оптические фильтрующие элементы («белый» фильтр, «черное» зеркало и т.п.), задача которых минимизировать попадание постороннего оптического излучения на поверхность пиро-электрического элемента.

Входное окно большинства ИК-извещателей выполнено в виде «белого» фильтра. Этот фильтр изготовлен из материала, рассеивающего видимый свет, но в то же время не влияющего на распространение инфракрасного излучения.

В извещателях с зеркальной системой концентрации входящего излучения дополнительный поглощающий фильтр размещается непосредственно на зеркале. Такое зеркало отлично отражает ИК-излучение и эффективно поглощает видимую часть спектра. Внешне оно имеет черный цвет, поскольку не отражает видимый свет, и поэтому называется «черным» зеркалом. Использование дополнительного, по отношению к непосредственно размещаемому на корпусе светочувствительного элемента, поглощающего фильтра позволяет уменьшить тепловую нагрузку на чувствительный элемент от поглощенной энергии падающего на него излучения, поскольку дополнительный поглощающий фильтр и чувствительный пироэлемент пространственно разнесены.

Совершенствуются и линзы Френеля. Прежде всего путем придания линзе сферической формы, минимизирующей аберрации по сравнению со стандартной цилиндрической формой. Кроме этого применяется дополнительное структурирование диаграммы направленности в вертикальной плоскости за счет мультифокусной геометрии линзы: в вертикальном направлении линза разделена на три сектора, каждый из которых независимо собирает излучение на один и тот же чувствительный элемент.

Весьма актуальной является проблема противодействия физическому экранированию извещателя, которое сводится к установке перед ним экрана, перекрывающего его «поле зрения» (так называемое «маскирование»). Технические средства противодействия маскированию составляют систему антимаскирования извещателя. Некоторые извещатели оснащаются встроенными ИК- светодиодами. В случае, если в зоне обнаружения извещателя, а следовательно в зоне действия светодиодов, возникает преграда, то отражение излучения светодиодов от преграды воспринимается извещателем как сигнал тревоги. Более того, периодически (в существующих моделях - один раз в 5 часов) происходит самотестирование извещателя на предмет наличия отраженного излучения ИК-светодиодов. В том случае, если при самотестировании на выходе электрической схемы не появится необходимый сигнал, то срабатывает схема генерации сигнала тревоги. Извещатели с функциями антимаскирования и самотестирования устанавливаются на наиболее ответственных объектах, в частности там, где возможно противодействие работе системы охраны.

Еще один путь повышения помехоустойчивости извещателя - это применение квадратичного чувствительного пироэлемента совместно с использованием микропроцессорной обработки сигнала. Разные фирмы решают проблему создания квадратичного элемента различным образом. Например фирма «OPTEX» применяет два обычных сдвоенных пироэлемента, расположенных рядом. Основная задача системы - выделить и «отсеять» события, вызванные одновременной засветкой обоих пироэлементов (например свет фар) или электрической помехой.

Фирма «ADEMCO» применяет специальную конструкцию счетверенного пироприемника, где четыре чувствительных элемента расположены в одном корпусе. При этом встречно включены пироэлементы, расположенные как в горизонтальной плоскости, так и в вертикальной. Такой извещатель не будет реагировать на мелких животных (мыши, крысы), которые зачастую бывают в складских помещениях и являются одной из причин ложных срабатываний (рис. 8). Использование разнополярного подключения чувствительных элементов в таком извещателе делает невозможным «шумовое» ложное срабатывавние.



Рис. 8. Работа многоканальной системы селекции шумовых импульсов на примере работы квадратичного охранного пассивного ИК-извещателя.

Фирма «ADEMCO» настолько уверена в совершенстве разработанного ею квадратичного извещателя, что объявила о выплате премии, если обладатель извещателя зафиксирует его ложное срабатывание.

Еще одной мерой предосторожности является применение проводящих пленочных покрытий, наносимых на внутреннюю поверхность входного окна для противодействия радиочастотным помехам.

Эффективным методом повышения помехоустойчивости извещателей является применение так называемой «двойной технологии», которая заключается в использовании комбинированного извещателя, реализующего пассивный инфракрасный и активный радиоволновой (иногда - ультразвуковой) принципы действия.

Радиоволновой (ультразвуковой) блок фиксирует наличие допплеровского сдвига в частотном спектре отраженного радиосигнала (ультразвука), обусловленного движением объекта. Применение таких извещателей наиболее эффективно при последующей микропроцессорной обработке поступающих сигналов. Эти извещатели не рекомендуется применять в помещениях, где находятся люди, так как излучение оказывает вредное влияние на здоровье.

Извещатели «двойной технологии» используются при охране помещений, в которых имеются небольшие домашние животные: кошки, собаки, - а также при наличии в охраняемом помещении периодически включаемых неподвижных теплоизлучающих устройств: факсимильный аппарат, калорифер, вентилятор и т.п.

Мы рассмотрели основы работы и конструкцию пассивных инфракрасных охранных извещателей. В целом все конструктивные ухищрения, применяемые теми или иными фирмами, имеют одну цель - уменьшить вероятность ложного срабатывания извещателя, поскольку ложное срабатывание ведет к неоправданным затратам на реагирование по тревоге, а также влечет моральный ущерб для владельца охраняемого имущества.

Извещатели постоянно совершенствуются. На современном этапе основными направлениями совершенствования извещателей является повышение их чувствительности, уменьшение числа ложных срабатываний, дифференциация подвижных объектов по признаку санкционированного или несанкци-онированного пребывания в зоне обнаружения.

Как источник электрического сигнала, каждый чувствительный пироэлемент является также источником случайных шумовых сигналов. Поэтому актуальной является задача минимизации флуктуационных помех, решаемая схемотехническим путем. Используются разные методы борьбы с шумами.

Во-первых, в извещателе устанавливаются электронные дискриминаторы входного сигнала по верхнему и нижнему уровню, что минимизирует частоту появления помехи (рис. 9).



Рис. 9. Пороговая система двухстороннего ограничения уровня шумового сигнала охранного пассивного ИК-извещателя.

Во-вторых, применяется режим синхронного учета импульсов, поступающих по обоим оптическим каналам. Причем схема составляется таким образом, что полезный оптический сигнал на входе приводит к появлению положительного электрического импульса по одному каналу и отрицательного по другому. На выходе применяется схема вычитания. Если источником сигнала является шумовой электрический сигнал - он будет идентичен для двух каналов и на выходе результирующий сигнал будет отсутствовать. Если источником сигнала является оптический сигнал, то выходной сигнал будет суммироваться.

В третьих, применяется метод счета импульсов. Сущность этого метода состоит в том, что одиночный сигнал регистрации объекта не приводит к формированию сигнала тревоги, а устанавливает извещатель в так называемое «предтревожное состояние». Если в течении определенного времени (на практике это - 20 секунд) повторно не поступит сигнал регистрации объекта, происходит сброс предтревожного состояния извещателя (рис. 10).



Рис. 10. Работа системы счетчика импульсов.

Как правило все извещатели требуют подключения электрического питания 12 В постоянного тока. Ток потребления типового извещателя находится в пределах 15 - 40 мА. Сигнал тревоги формируется и передается на охранную централь посредством выходного реле с нормально замкнутыми контактами.

Промышленностью выпускаются извещатели для установки в помещении, а также на открытых площадках; последние имеют соответствующее климатическое исполнение. Типовой срок службы пассивных инфракрасных извещателей - 5 - 6 лет.