Самостоятельный ремонт электродрели. Перемотка от а до я Видео: как снять и в чём могут быть трудности

02.09.2019


При не своевременной замене подшипников на якоре электроинструмента, якорь начинает касаться ротора и в месте касания происходит локальный нагрев. Обычно такой нагрев происходит со стороны «разбитого» подшипника по всей окружности якоря и в одной точке статора. Так как по якорю температура распределена по большей площади, а на статоре в одном месте, то, обычно первым выходит из строя статор. От повышенной температуры сгорает изоляция в пазу и провод, касаясь металлического паза, замыкает на корпус.

Другой причиной выхода из строя статора может быть обычный перегрев. Когда инструмент работает под большой нагрузкой продолжительное время. И в том и другом случае, статорные катушки необходимо перемотать или заменить весь статор.

Если для перемотки якоря необходимы определённые знания и навыки, а также токарный станок для проточки коллектора после намотки. И балансировочный станок для динамической балансировки якоря после намотки, пропитки и проточки. То перемотка статора, доступна любому, кто имеет желание и эмаль-провод. Необходимо просто аккуратно разобрать сгоревший статор и посчитать количество витков в каждой катушке. Зачастую, количество витков в обеих катушках совпадает. Исключение составляют лишь небольшой процент двигателей имеющие несколько режимов работы. Например, миксеры. Также, при размотке катушек замечаем направление намотки и количество проводов припаянных к одному выводу. Статор более мощного инструмента может быть намотан в 2 провода.


После разборки необходимо замерить диаметр провода. Провод замеряется без эмали. Далее смотрим, какой провод был использован в статоре, медь или алюминий. Если был алюминий, а вы хотите мотать медью, то необходимо по таблице , или по формуле узнать сечение сгоревшего провода. И умножить его на коэффициент 0,7-0,8. Так мы узнаем сечение медного провода. Теперь снова по таблице переводим сечение в диаметр. Медный провод всегда будет тоньше алюминиевого.

После того, как мы узнали диаметр провода, количество витков, направление намотки и количество проводов припаянных к выводу, необходимо проверить пазы статора и подготовить гильзы. Пазы должны быть чистыми, без острых краёв, заусениц. Старые гильзы должны быть удалены, а возможные наплавления сгоревшего провода счищены. Новые гильзы изготавливаем из электрокартона (прешпана), учитывая направление волокон, и предохранив края от разрывов скотчем. Длина гильзы должна быть на 4мм больше длины железа статора.

Намотку производим, закрепив на статоре две металлические пластины для формирования лобовых частей. Выходящие концы провода изолируем кембриками. Соблюдаем направление намотки и внимательно считаем витки. После намотки уплотняем провод в пазах. Для этого используем отвёртку, или металлический прут обмотанный прешпаном. Лобовые части катушки фиксируем тесьмой или суровой нитью и связываем между собой, так, чтоб катушка сидела в пазах плотно и не вибрировала. А также чтоб провода не пушились.

Перемотка генератора только на первый взгляд кажется трудной и сложновыполнимой задачей. Однако перекрутить статор можно и в гаражных условиях, достаточно получить необходимый опыт и знания. Например, 3-фазный статор удастся перемотать всего за 240 минут, с учетом всех подготовительных манипуляций.

Причины выхода из строя обмотки

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

Эксплуатация генератора на машинах в современных условиях осуществляется довольно жестко. Из-за антигололедных реагентов, которыми обильно посыпают дороги, выходит из строя изоляция элемента.

Примечательно, что на иномарках генератор расположен в самом грязном месте (производители зарубежных моделей не учли, что дороги в РФ не такие чистые, как у них). На него всегда оказывает давление грязь, вода и химические составы.

Обмотка статора выходит из строя по описанной выше причине. После длительных нагрузок и работы в экстремальных условиях, внутри образуется межвитковое замыкание или коротит на корпус источника тока.

Следует знать, что обмотка тщательно уложена бывает в пазы железного фюзеляжа (корпуса). Обмотка отличается высокими магнитными характеристиками, изготавливается из медного провода.

Подготовка

В любом деле, прежде чем переходить к непосредственной работе, следует подготовить необходимый инструментарий. Для перемотки агрегата много инструментов не понадобится, однако обязательно нужен будет намоточный станок. Благодаря этому оборудованию можно легко наматывать катушки.

Лучше обзавестись сразу намоточным станком с функцией счетчика. Таким образом удастся контролировать количество витков.

Помимо станка нужен будет медный провод нужного размера и трамбовочный инструмент.

К дополнительным инструментам, наличие которых приветствуется, относится токарный станок и сушильно-выжигательная печь. Последняя поможет быстро высушить статор, после нанесения лака.

Если профессиональной печки нет, то сушить можно и под 100-ваттовой лампочкой, но это заметно дольше.

Да, и обязательно подготовить тару, где статор будет пропитан лаком. Безусловно, надо держать под рукой обязательные инструменты на каждый раз: молоток, отвертку, плоскогубцы и т.д.

Проверка

Перед тем, как начать операцию, нужно проверить состояние обмотки. Снимается и разбирается электромотор.

Для проверки обмотки используется омметр, которым измеряется сопротивление. Достаточно прикоснуться прибором к кольцам ротора или выводам статора, и сверить показания.

Внимание. Если сопротивление обмотки ротора показывает значения, близкие к 1.8-5 омам, то обмотка считается рабочей. Если ниже этих значений – в цепи есть витки с замыканием. При больших значениях можно судить однозначно о порванной обмотке.

Что касается сопротивления обмотки статора, то оно должно быть малым.

Судить о состоянии обмотки можно и по внешним признакам. К примеру, темная обмотка или следы ее осыпания напрямую свидетельствуют о нарушениях.

Обжиг старой изоляции

Важнейшим этапом работы является обжиг старой изоляции. Процесс ничем не опасен для металла с его магнит особенностями, зато упрощается в разы демонтаж и чистка детали. Рекомендуется перед обжигом измерять глубину выступов передних частей.

Измерение выступов крайне важно для некоторых моделей генераторов. Если этого не сделать, то выступы после сбора не уберутся обратно в корпус из-за чересчур толстой обмотки.

Схема

Важно перед тем, как проводить наматывание обмотки, прочертить схему. К примеру, в 1-фазном генератора обмотки соединены по принципу линейности. Другими словами, начало 1-й части обмотки аналогично началу 2-й фазы, конец 3-й – концу 4-й, начало 3-й – началу – 4-й и т.д.

А вот в 3-фазном генераторе соединение осуществляется другим образом. Начало 1-й обмотки — конец 2-й, начало 2-й – конец 3-й и т.д.

В трехфазном генераторе также часто используется схема «звезда» или «треугольник». Если использовать в генераторе обмотку, собранную по схеме «звезда», вольтаж увеличится в полтора и более раз. В соединении «треугольник» вольтаж будет равен стандартному.

Алгоритм проведения намотки своими руками

Теперь представляем непосредственно процесс намотки:

  • осуществляется нарезание изоляции либо синтофлексом, либо прессшпаном;
  • затем изготовленные прокладки укладываются в пазы (должно быть 36 одинаковых прокладок).

Синтофлекс очень тверд, не рвется на выходах из паза. Прессшпан более чувствительный материал, с ним работать нужно осторожнее, следить за перегибами.

Время начинать первую обмотку:

  • провод должен быть уложен сначала волной (вдет в первый паз, выведен из четвертого).

  • таким же манером наматывается 1/2 витков;
  • после этого намотка продолжается в обратную сторону, тем самым, перекрывая пустые передние части полукатушек.

Техника намотки, когда поворот делается в пазу с выводом начальной части провода, считается самой эффективной. Она позволяет заполнять передние части, и во время опрессовки меньше будет сложностей с выступами.

Затем наматываются остальные две фазы:

  • после того, как намотаны все фазы, начинается заделка пазов;
  • выступы обстукиваются деревянными проставками (выступы не должны заходить внутрь железного корпуса и выступать за пределы фюзеляжа);
  • затем готовая обмотка примеряется в крышку, все хорошенько проверяется – не касается ли провода корпуса;
  • выводы концов обмоток зачищаются и соединяются;
  • затем они скручиваются, а концы обмоток пропаиваются.

Также проводится изоляция куском текстильного кембрика.

Важно перед соединением обязательно проверять, не замыкает ли между фазами и на железо.

Наматывание обмотки представляет собой процесс, схожий с приготовлением колбасы. Оба вывода (конца) фиксируются кордовой или льняной ниткой. Однако использовать капрон или прочие термопласты запрещено, так как они легко текут при сушке.

Что касается процесса пропитки, то сначала поверхность подогревается, а затем погружается в пропиточный состав ГФ 95. Для пропитки не подходят мебельные лаки, только особые. А вот эпоксидка – совсем другое дело. Только ее следует подогреть до жидкого состояния, но не слишком, чтобы мгновенно не схватывала.

Подходит также автомобильная краска МЛ, хотя она и дает толстый слой.

После того, как статор пропитывается лаком, нужно оставить его на некоторое время, чтобы стек лишний лак. Затем деталь помещается в печь, где и проходит процесс сушки.

Внимание. Температура в печке должна оставаться на самом низком режиме. Деталь устанавливается на решетку или подвешивается внутри. Рекомендуется также подставить под нее керамическую плитку.

В конце генератор с обновленными ротором и статором собирается. Обязательно проверяют, какое напряжение он выдает.

Расчет обмотки статора включает в себя определение числа пазов статора Z1 и числа витков в фазе обмотки статора 1. При этом число витков фазы обмотки статора должно быть таким, чтобы линейная нагрузка двигателя и индукция в воздушном зазоре как можно более близко совпадали с их значениями, принятыми предварительно при выборе главных размеров, а число пазов статора обеспечивало достаточно равномерное распределение катушек обмотки.

Чтобы выполнить эти условия, выбирают предварительное значение зубцового деления t1 в зависимости от типа обмотки, номинального напряжения и полюсного деления машины. Принимая номинальное напряжение равное 380 В, выберем предельные значения t1 , мм, по таблице 6-9 , t1max=22 мм и t1min=17 мм.

Тогда возможные числа пазов статора Z1min и Z1max соответствующие выбранному диапазону определяются по формуле 6-16

Принимаем Z1 =60, тогда число пазов на полюс и фазу q, найдем по формуле

где m - число фаз, m=3.

Зубцовое деление статора t1 , мм, окончательно определим по формуле

t1 не выходит за указанные выше пределы.

При определении числа эффективных проводников в пазу UП: в двухслойной обмотке желательно, чтобы оно было кратным двум.

Вначале определяем предварительное число эффективных проводников в пазу U"П при условии, что параллельные ветви в обмотке отсутствуют (а = 2) по формуле (6-17)

где А - значение линейной нагрузки, А/м;

I1н - номинальный ток обмотки статора, А.

Номинальный ток обмотки статора определяется по формуле 6-18

где U1н - номинальное напряжение обмотки статора, В, Uн=380 В.

Отсюда по формуле (3.2)

При определении числа эффективных проводников в пазу руководствуются следующим: uп должно быть целым, а в двухслойной обмотке желательно, чтобы оно было кратно двум. Применение двухслойных обмоток с нечетным uп допускается лишь в исключительных случаях, так как это приводит к необходимости выполнять разно витковые катушки, что усложняет технологию изготовления и укладки обмоток.

Примем такое число параллельных ветвей обмотки а, при котором число эффективных проводников в пазу либо будет полностью удовлетворять приведенным ранее условиям, либо потребует лишь незначительного изменения.

Принимаем а=3, тогда число эффективных проводников в пазу uп определяется по формуле 6-19

Примем число эффективных проводников в пазу uп=16.

Окончательное значение числа витков в фазе обмотки статора 1 определяется по формуле 6-20

Окончательное значение линейной нагрузки А, А/м, определяется по формуле 6-21

Значение линейной нагрузки А=54,6 А/м расходится с принятым ранее значением равным 55000 А/м менее чем на 5%.

Коэффициент укорочения ky1 , учитывающий уменьшение ЭДС витка, вызванное укорочением шага обмотки, определяется по формуле 3-4

где 1 - укорочение шага обмотки статора.

Укорочение шага двухслойной обмотки выбирают так, чтобы шаг обмотки был равен целому числу, а коэффициент укорочения составлял приблизительно 1=0,8 при 2p=4

Шаг двухслойной обмотки y1 тогда можно определить по формуле

Полученное значение шага двухслойной обмотки y1 округляем до целого, тогда принимаем y1 =12.

Пересчитаем укорочение шага двухслойной обмотки по формуле

Тогда по формуле 3.7

Найдем коэффициент распределения обмотки, учитывающий уменьшение ЭДС распределенной по пазам обмотки по сравнению с сосредоточенной обмоткой. Он определяется по формуле 3-6

Значение обмоточного коэффициента kоб1 определим по формуле 3-3.

Уточнённое значение обмоточного коэффициента тогда равно

Окончательное значение магнитного потока Ф, Вб, по формуле 6-22

Окончательное значение магнитной индукции в воздушном зазоре В, Тл, определяется по формуле 6-23

Значение магнитной индукции в воздушном зазоре 0,815Тл расходится с принятым ранее значением равным 0,82 Тл менее чем на 5%.

Плотность тока в обмотке статора J1 , А/мм2, предварительно определяется по формуле 6-25

где AJ1 - произведение линейной нагрузки на плотность тока и определяется по рисунку 6-16, д , AJ1 =290 А/мм 3.

Сечение эффективного проводника qэф, мм2, предварительно определяется по формуле 6-24

Обмотка статора выполняется из прямоугольного обмоточного провода и укладывается в прямоугольные пазы.

Обмоточный провод марки ПЭТП-155 (класс F) выбираем по табл. П-29 (копылов часть 2)

Номинальный размер проволоки по большей стороне b , мм

Номинальный размер по меньшей стороне a, мм

Сечение эффективного проводника

Окончательно плотность тока в обмотке статора рассчитывается по формуле 6-27

Контроль правильности: плотность тока в обмотке статора отличается от заданной менее 10%.

Обмотка из прямоугольного провода укладывается в пазы с параллельными стенками. Зубцы в таких пазах имеют трапецеидальное сечение, и индукция в них неравномерна. Выбираем прямоугольный полуоткрытый паз статора. Принимаем предварительно по таблице 6-10 допустимую индукцию в ярме статора Ва=1,5 Тл и индукцию в наиболее узком сечении зубца статора Вz1max=1,9 Тл.

Тогда минимальная ширина зубца bz1min , мм, можно определить по формуле 6-29

где lCT1 - длина пакета статора, мм, равная длине воздушного зазора l, мм;

lCT1 = 250 мм,

kС - коэффициент заполнения сталью пакета статора, выбираемый по таблице 6-11 ; kС=0,95.

Высота ярма статора ha, мм, определяется по формуле 6-28

Во многих бытовых устройствах и самодельных конструкциях в качестве привода используются электрические машины небольшой мощности. Несмотря на высокую надежность электромоторов, их выход из строя по ряду причин – не редкость. Учитывая относительно высокую стоимость этих устройств, практичнее осуществлять их ремонт, а не замену. Предлагаем рассмотреть возможность перемотки электродвигателей в домашних условиях.

Виды электродвигателей и особенности их ремонта

Как правило, в быту используются коллекторные моторы постоянного тока и бесколлекторные асинхронные двигатели переменного тока. Именно ремонт этих приводов мы и будем рассматривать. Информацию о принципе действия и конструктивных особенностях асинхронных и коллекторных машин можно найти на нашем сайте.

Что касается синхронных приводов, то в быту они практически не используются, поэтому в данной публикации эта тема не затрагивается.

Особенности ремонта асинхронной машины

Проблемы с двигателем любого типа могут иметь механический или электрический характер. В первом случае свидетельствовать о неисправности может сильная вибрация и характерный шум, как правило, это говорит о проблемах с подшипником (обычно в торцевой крышке). Если вовремя не устранить неисправность, вал может заклинить, что неминуемо приведет к выходу из строя обмоток статора. При этом тепловая защита автоматического выключателя может не успеть сработать.

Исходя из практики, в 90% выход из строя асинхронных машин возникают проблемы с обмоткой статора (обрыв, межвитковое замыкание, КЗ на корпус). При этом короткозамкнутый якорь, как правило, остается в рабочем состоянии. Поэтому даже при механическом характере повреждений необходимо произвести проверку электрической части.

Проверка обмотки

В большинстве случаев проблема может быть обнаружена по внешнему виду и характерному запаху (см. рис. 1). Если эмпирическим путем неисправность установить не удается, переходим к диагностике, которая начинается с прозвонки на обрыв. Если таковая обнаруживается, выполняется разборка двигателя (этот процесс будет описан отдельно) и тщательный осмотр соединений. Когда дефект не обнаружен, можно констатировать обрыв в одной из катушек, что требует перемотки.

Если прозвонка не показала обрыва, следует переходить к измерению сопротивления обмоток, при этом учитывать следующие нюансы:

  • сопротивление изоляции катушек на корпус должно стремиться к бесконечности;
  • у трехфазного привода обмотки должны показывать одинаковое сопротивление;
  • у однофазных машин сопротивление пусковых катушек превышает данные показания рабочих обмоток.

Помимо этого следует учитывать, что сопротивление статорных катушек довольно низкое, поэтому для его измерения бессмысленно использовать приборы с низким классом точности, к таковым относятся большинство мультиметров. Исправить ситуацию можно собрав несложную схему на потенциометре с добавлением дополнительного источника питания, например автомобильной аккумуляторной батареи.


Методика измерений следующая:

  1. Подключается катушка привода к схеме, представленной выше.
  2. Потенциометром устанавливается ток 1 А.
  3. Производится расчет сопротивления катушке по следующей формуле: , где R К и U ПИТ были описаны на рисунке 2. R – сопротивление потенциометра, – падение напряжения на измеряемой катушке (показывает вольтметр на схеме).

Стоит также рассказать о методике, позволяющей определить место межвиткового замыкания. Это делается следующим образом:

Статор, освобожденный от ротора, подключается через трансформатор к пониженному питанию, предварительно поместив к нему стальной шарик (например, от подшипника). Если катушки рабочие, шарик будет циклически двигаться по внутренней поверхности безостановочно. При наличии межвиткового КЗ, он «прилипнет» к этому месту.


Особенности ремонта коллекторных приводов

У данного типа электромашин чаще возникают механические неисправности. Например, стирание щеток или засорение контактов коллектора. В таких ситуациях ремонт сводится к чистке контактного механизма или замене графитовых щеток.

Тестирование электрической части сводится к проверке сопротивления обмотки якоря. В этом случае щупы прибора двум соседним контактам (ламелям) коллектора, после снятия показаний производится измерение далее по кругу.


Отображенное сопротивление должно быть примерно одинаковым (с учетом погрешности прибора). Если наблюдается серьезное отклонение, то это говорит, что имеет место быть межвитковое КЗ или обрыв, следовательно, необходима перемотка.

Обмоточные данные электродвигателей

Это справочные данные, поэтому самый надежный способ получить такую информацию – обратиться к соответствующим источникам. Эти данные также могут приводиться в паспорте к изделию.

В сети можно встретить советы, в которых рекомендуют при перемотке вручную пересчитать витки и измерить диаметр провода. Это трата времени. Значительно проще и надежней по маркировке двигателя найти всю необходимую информацию, в которой будут указаны следующие параметры:

  • номинальные рабочие характеристики (напряжение, мощность, потребляемый ток, число оборотов и т.д.);
  • количество проводов для одного паза;
  • Ø проволоки (как правило, в данном показателе изоляция не учитывается);
  • информация о внешнем и внутреннем диаметре статора;
  • количество пазов;
  • с каким шагом выполняется обмотка;
  • размеры ротора и т.д.

Ниже представлен фрагмент таблицы с намоточными данными для электромашин типа 5A.


Пошаговая инструкция перемотки электродвигателя своими руками

Необходимо сразу предупредить, что без спецоборудования и навыков работы перемотка катушек будет, скорее всего, бесполезным занятием. С другой стороны отрицательный опыт это тоже опыт. Понимание сложности процесса является лучшим объяснением его стоимости.

Первый этап – демонтаж

Мы приводим алгоритм действий для асинхронных машин, он следующий:

  1. Отключаем привод от сети (380 или 220 В).
  2. Демонтируем электромотор с конструкции, где он был установлен.
  3. Снимаем задний защитный кожух охлаждающего вентилятора.
  4. Демонтируем крыльчатку.
  5. Откручиваем крепление торцевых крышек, после чего снимаем их. Начинать желательно с фронтальной части, после ее демонтажа ротор легко «выйдет» с тыловой крышки.
  6. Вытаскиваем ротор.

Данный процесс можно существенно облегчить, если использовать специальное устройство – съемник. С его помощью легко освободить вал двигателя от шкива или шестерни, в также снять торцевые крышки.


Мы не будем приводить инструкцию по разборке коллекторного двигателя, поскольку особо не отличается. Строение электромашины данного типа можно найти на нашем сайте.

Этап второй – снятие обмотки

Очередность действий следующая:

  1. При помощи ножа снимаем бандажный крепеж и изоляционное покрытие с мест соединений проводов. В некоторых инструкциях рекомендуется зафиксировать схему соединений, например, сделав фотоснимок. Делать это особого смысла нет, поскольку это справочная информация и узнать ее по марке двигателя не составляет проблемы.
  2. Используя зубило, сбиваем верхушки проводов с каждого торца статора.
  3. Освобождаем пазы, используя пробойник соответствующего диаметра.
  4. Очищаем статор от грязи, копоти, лака пропитки.

На этом этапе мы рекомендуем остановиться, взять корпус и отвезти его специалистам. Самостоятельный демонтаж позволит снизить стоимость восстановительных работ. Как уже упоминалось выше, без спецоборудования качественно перемотать катушки довольно сложно. Для понимания сложности процесса опишем его технологию, что позволит облегчить выбор.

Перемотка статора (финальная фаза)

Процесс состоит из следующих действий:


Если на восстановление сдавался только корпус, рекомендуем перед тем, как включать мотор, проверить катушки.

Перемотка якоря

Процесс замены обмотки коллекторного двигателя несколько похож за исключением небольших нюансов, связанных с особенностью исполнения. Например, на перемотку отправляют якорь, а не корпус, при условии, что проблема возникла не с катушками возбуждения. Помимо этого имеются следующие отличия:

  • Для намотки применяется специальный станок, более сложной конфигурации.
  • Обязательно необходима проточка, балансировка якоря (в финальной части процесса), а также его чистка и шлифовка.
  • При помощи специального фрезерного станка производится нарезка коллектора.

Для перечисленных процессов требует спецоборудование, без него перемотка электродвигателей – пустая трата времени.


Отличия новой аккумуляторной батареи AEG L1220 от старой L1215

Для понимания разницы новых аккумуляторов по сравнению со старой версией требуется произвести тестирование под нагрузкой.

Сравнительному испытанию подвергались аккумуляторы:

L1215, артикул 4932 3526 58, 1,5 А*ч, 18 Вт*ч, на базе банок INR18650-15M L1220, артикул 4932 430165, 2,0А*ч, 24Вт*ч, на базе банок INR18650-20R Технические данные от производителя на банки: АккумуляторНовый аккумулятор оснащен платой защиты: Итоги тестирования: 1.По сравнению со старой версией 1500 мАчразница в заявленной ëмкостисоставляет 33,3 %. По результатам тестирования превосходство нового аккумулятора составляет более 50 %. Т.е. реально разница больше, чем заявлено. 2.Новый аккумулятор имеет меньшее внутреннее сопротивление, и как следствие:Более высокое напряжение под нагрузкой –больше отдаваемая мощностьМеньше потеря мощности, идущая на нагрев аккумулятора. Резюме: Новый аккумулятор на базе ячеек INR18650-20R заметно превосходит старую версию и при сопоставимой цене предпочтителен при покупке.

Из сопроматаM(крутящий момент) = τ (напряжение в стержне) * W (полярный момент сечения, равный Π*D3/16)

Класс прочности болта *.* означает следующее: 1 цифра – 1/100 номинальной величины предела прочности, в МПа 2 цифра – отношение предела текучести к пределу прочности Т.е болт класса прочности 6.8 имеет предел прочности 600 МПа, а предел текучести 600*0,8=480 МПа Подтверждением полученных цифр является проведенный в учебном центре опыт: Болт М6 прочностью 8,8 начинает «плыть» (возникают необратимые пластические деформации) при 17 Нм, а при достижении крутящего момента в 23 Нм происходит разрушение. Произведём подобный расчет для шурупов и саморезов: Для расчёта взят полный диаметр, минимальное сечение гораздо меньше! Вывод: Для использования самого популярного крепежа со шлицами Ph2 и Pz2требуется инструмент с крутящим моментом не выше 6 Нм для диаметра 4,2-4,5 мм, в редких случаях до 10 Нм для крепежа диаметром 5,0 мм. Превышение указанных моментов ведет к повреждению крепежа и отверточной насадки (биты). 13 саморезов Ø4,5 х70 мм закручены в «пирог» толщиной 121 мм Момента в 3,0 Нм, развиваемого отверткой Makita DF010DSE,достаточно для уверенного заворачивания самореза Ø4,5 х70 мм на всю длину. Если для предотвращения разрушения шурупов и саморезов нужен крутящий момент 2-3Нм, редко 5-6Нм, и в исключительных случаях до 10Нм, то за чем на шуруповерте момент в 20,30,50Нм? А что ещё умеет дрель-шуруповёрт? Если дрель–значит сверлить! А какой крутящий момент нужен для сверления? Теоретическое отступление №2. Рассмотрим сверление стали, как самое тяжелое по нагрузке сверление металла. Крутящий момент рассчитывается по формуле Mкр=10CMDqSyKp, где D-диаметр сверла, S-подача, остальные знаки– поправочные коэффициенты. Для стали сδ=750МПа: CM=0,0345,q=2,0,y=0,8,Kp=1,0 Скорость сверления принимаем равной 20-25 м/мин (с охлаждением спреем), соответствующие обороты заносим в 4-тый столбец. Крутящий момент, скорость вращения и мощность на валу являются связанными величинами. Величину необходимой мощности на валу заносим в 5 -тый столбец. Смотрим на цифры: Для сверления отверстия Ø10-13 мм требуется крутящий момент 8-15 Нм. При рекомендуемой скорости сверления 720 -550 об/мин для этого нужна мощность от 570 до 850 Вт.
А какова мощность аккумуляторной дрели?

В обычном сверлильном патроне не зря 3 отверстия:
Для надежной фиксации патрон должен быть поочередно затянут через все 3 положения ключа. В патроне, затянутом через одно отверстие, сверло Ø10 мм проворачивается при крутящем моменте в 13,5 Нм, а через 3 отверстия (как положено) при 23 Нм. А к сверлу Ø13 мм при сверлении стали нужно передать крутящий момент ~15 Нм. Т.е. при затянутом через одно отверстие патроне сверло будет проворачиваться! Мощность аккумуляторной дрели(потребляемая) = Напряжение аккумулятора*потребляемый ток Потребляемый ток для мощных моделей составляет 20-25 Ампер Таким образом, мощность для аккумуляторного инструмента будет составлять: Для 12 Вольт: 240–300Вт 14,4 Вольт: 290–360Вт 18 Вольт: 360–430Вт Крутящий момент для самой мощной(18вольт) дрели будет составлять: на скорости 1500-1700об/мин: 2-3Нм на скорости 300-400об/мин: 8-14Нм сверление стали сверлом до Ø7мм сверление стали сверлом Ø10-13мм Это величины крутящего момента при максимальной мощности.(в режиме сверления) При перегрузке двигателя при заворачивании жесткого крепежа(на пример болтов) величина крутящего момента достигает 30-40Нм. Именно эти величины указываются в характеристиках как максимальный мягкий/жесткий момент.Практического значения они не имеют! Если при работе инструментом требуется крутящий момент больших значений – значит нужен специализированный инструмент конкретно под эту работу. Резюме: Обычному пользователю достаточно иметь в аккумуляторной дрели/шуруповерте крутящий момент 3-6Нм, регулируемый трещеткой, для работы со стандартным крепежом с головкой размером до Ph/Pz2, и до 10Нм для Ph/Pz3. Для сверления стали, пластмассы, дерева сверлами диаметром до 10мм достаточно крутящего момента в 10-12Нм. Крутящий момент более 15Нм требует применения специализированного инструмента и не должен входить в сферу применения универсальной дрели-шуруповерта.


Доброе время суток ребята! Есть вопрос? Имеется статор от какой то болгарки с размерами внут. диаметр -42 мм. наружный диаметр -72 мм высота -50 мм. Был намотан проводом 0,6 мм, количество витков -125 (на одной обмотке). У меня нет такого сечения а есть провода с диаметром 0,56 и 0,63. Каким проводом можно намотать статор и какое количество витков нужно для каждого провода? Если посчитать по сечению то эти провода превышают допустимые 10%. Как расчитывается провод и количество витков от размеров статора? За ранее благодарочка!!!