Силы действующие на тело на наклонной плоскости. Движение тела по наклонной плоскости с переходом на горизонтальную. Эксперимент с поступательно движущимся телом

18.01.2024

На наклонной плоскости длиной 13 м и высотой 5 м лежит груз массой 26 кг. Коэффициент трения равен 0,5. Какую силу надо приложить к грузу вдоль плоскости, чтобы втащить груз? чтобы стащить груз
РЕШЕНИЕ

Какую силу надо приложить для подъема вагонетки массой 600 кг по эстакаде с углом наклона 20°, если коэффициент сопротивления движению равен 0,05
РЕШЕНИЕ

При проведении лабораторной работы были получены следующие данные: длина наклонной плоскости 1 м, высота 20 см, масса деревянного бруска 200 г, сила тяги при движении бруска вверх 1 Н. Найти коэффициент трения
РЕШЕНИЕ

На наклонной плоскости длиной 50 см и высотой 10 см покоится брусок массой 2 кг. При помощи динамометра, расположенного параллельно плоскости, брусок сначала втащили вверх по наклонной плоскости, а затем стащили вниз. Найти разность показаний динамометра
РЕШЕНИЕ

Чтобы удерживать тележку на наклонной плоскости с углом наклона α, надо приложить силу F1 направленную вверх вдоль наклонной плоскости, а чтобы поднимать вверх, надо приложить силу F2. Найти коэффициент сопротивления
РЕШЕНИЕ

Наклонная плоскость расположена под углом α = 30° к горизонту. При каких значениях коэффициента трения μ тянуть по ней груз труднее, чем поднимать его вертикально
РЕШЕНИЕ

На наклонной плоскости длиной 5 м и высотой 3 м находится груз массой 50 кг. Какую силу, направленную вдоль плоскости, надо приложить, чтобы удержать этот груз? тянуть равномерно вверх? тянуть с ускорением 1 м/с2? Коэффициент трения 0,2
РЕШЕНИЕ

Автомобиль массой 4 т движется в гору с ускорением 0,2 м/с2. Найти силу тяги, если уклон равен 0,02 и коэффициент сопротивления 0,04
РЕШЕНИЕ

Поезд массой 3000 т движется вниз под уклон, равный 0,003. Коэффициент сопротивления движению равен 0,008. С каким ускорением движется поезд, если сила тяги локомотива равна: а) 300 кН; б) 150 кН; в) 90 кН
РЕШЕНИЕ

Мотоцикл массой 300 кг начал движение из состояния покоя на горизонтальном участке дороги. Затем дорога пошла под уклон, равный 0,02. Какую скорость приобрел мотоцикл через 10 с после начала движения, если горизонтальный участок дороги он проехал за половину этого времени? Сила тяги и коэффициент сопротивления движению на всем пути постоянны и соответственно равны 180 Н и 0,04
РЕШЕНИЕ

Брусок массой 2 кг находится на наклонной плоскости с углом наклона 30°. Какую силу, направленную горизонтально (рис. 39), надо приложить к бруску, чтобы он двигался равномерно по наклонной плоскости? Коэффициент трения бруска о наклонную плоскость равен 0,3
РЕШЕНИЕ

Поместите на линейке небольшой предмет (резинку, монету и т. д.). Постепенно поднимайте конец линейки, пока предмет не начнет скользить. Измерьте высоту h и основание b полученной наклонной плоскости и вычислите коэффициент трения
РЕШЕНИЕ

С каким ускорением а скользит брусок по наклонной плоскости с углом наклона α = 30° при коэффициенте трения μ = 0,2
РЕШЕНИЕ

В момент начала свободного падения первого тела с некоторой высоты h второе тело стало скользить без трения с наклонной плоскости, имеющей ту же высоту h и длину l = nh. Сравнить конечные скорости тел у основания наклонной плоскости и время их движения.

Пусть небольшое тело находится на наклонной плоскости с углом наклона a (рис. 14.3,а ). Выясним: 1) чему равна сила трения, если тело скользит по наклонной плоскости; 2) чему равна сила трения, если тело лежит неподвижно; 3) при каком минимальном значении угла наклона a тело начинает соскальзывать с наклонной плоскости.

а) б)

Сила трения будет препятство­вать движению, следовательно, она будет направлена вверх по наклонной плоскости (рис. 14.3,б ). Кроме силы трения, на тело действуют еще сила тяжести и сила нормальной реакции . Введем систему координат ХОУ , как по­казано на рисунке, и найдем проекции всех указанных сил на коор­динатные оси:

Х : F трХ = –F тр, N X = 0, mg X = mg sina;

Y : F трY = 0, N Y = N , mg Y = –mg cosa.

Поскольку ускоряться тело может только по наклонной плоскости, то есть вдоль оси X , то очевидно, что проекция вектора ускорения на ось Y всегда будет равна нулю: а Y = 0, а значит, сумма проекций всех сил на ось Y также должна равняться нулю:

F трY + N Y + mg Y = 0 Þ 0 + N – mg cosa = 0 Þ

N = mg cosa. (14.4)

Тогда сила трения скольжения согласно формуле (14.3) равна:

F тр.ск = mN = mmg cosa. (14.5)

Если тело покоится , то сумма проекций всех сил, действующих на тело, на ось Х должна равняться нулю:

F трХ + N Х + mg Х = 0 Þ –F тр + 0 + mg sina = 0 Þ

F тр.п = mg sina. (14.6)

Если мы будем постепенно увеличивать угол наклона, то величина mg sina будет постепенно увеличиваться, а значит, будет уве­личиваться и сила трения покоя, которая всегда «автоматически подстраивается» под внешнее воздействие и компенсирует его.

Но, как мы знаем, «возможности» силы трения покоя не безгранич­ны. При каком-то угле a 0 весь «ресурс» силы трения покоя будет исчерпан: она достигнет своего максимального значения, равного силе трения скольжения. Тогда будет справедливо равенство:

F тр.ск = mg sina 0 .

Подставив в это равенство значение F тр.ск из формулы (14.5), получим: mmg cosa 0 = mg sina 0 .

Разделив обе части последнего равенства на mg cosa 0 , получим:

Þ a 0 = arctgm.

Итак, угол a, при котором начинается скольжение тела по наклонной плоскости, задается формулой:

a 0 = arctgm. (14.7)

Заметим, что если a = a 0 , то тело может или лежать неподвижно (если к нему не прикасаться), или скользить с постоянной скоростью вниз по наклонной плоскости (если его чуть-чуть толкнуть). Если a < a 0 , то тело «стабильно» неподвижно, и легкий толчок не произведет на него никакого «впечатления». А если a > a 0 , то тело будет соскальзывать с наклонной плоскости с ускорением и безо всяких толчков.

Задача 14.1. Человек везет двое связанных между собой саней (рис. 14.4,а ), прикладывая силу F под углом a к горизонту. Массы саней одинаковы и равны т . Коэффициент трения полозьев по снегу m. Найти ускорение саней и силу натяжения Т веревки между санями, а также силу F 1 , с которой должен тянуть веревку человек для того, чтобы сани двигались равномерно.

F a m m а) б) Рис. 14.4
а = ? Т = ? F 1 = ?

Решение . Запишем второй закон Ньютона для каждых саней в проекциях на оси х и у (рис. 14.4,б ):

I у : N 1 + F sina – mg = 0, (1)

x : F cosa – T – mN 1 = ma ; (2)

II у : N 2 – mg = 0, (3)

x : T – mN 2 = ma . (4)

Из (1) находим N 1 = mg – F sina, из (3) и (4) находим Т = mmg+ + ma. Подставляя эти значения N 1 и Т в (2), получаем

.

Подставляя а в (4), получаем

T = mN 2 + ma = mmg + та =

Mmg + т .

Чтобы найти F 1 , приравняем выражение для а к нулю:

Ответ : ; ;

.

СТОП! Решите самостоятельно: В1, В6, С3.

Задача 14.2. Два тела массами т и М связаны нитью, как показано на рис. 14.5,а . С каким ускорением движется тело М , если коэффициент трения о поверхность стола m. Каково натяжение нити Т ? Какова сила давления на ось блока?

т М m Решение. Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 (рис. 14.5,б ), учитывая, что : х 1: Т – mMg = Ма , (1) х 2: mg – T = ma . (2) Решая систему уравнений (1) и (2), находим:
а = ? Т = ? R = ?

Если грузы не движутся, то .

Ответ : 1) если т < mМ , то а = 0, Т = mg , ; 2) если т ³ mМ , то , , .

СТОП! Решите самостоятельно: В9–В11, С5.

Задача 15.3. Два тела массами т 1 и т 2 связаны нитью, перекинутой через блок (рис. 14.6). Тело т 1 находится на наклонной плоскости с углом наклона a. Коэффициент трения о плоскость m. Тело массой т 2 висит на нити. Найти ускорение тел, силу натяжения нити и силу давления блока на ось при условии, когда т 2 < т 1 . Считать tga > m.

Рис. 14.7

Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 , учитывая, что и :

х 1: т 1 g sina – Т – mm 1 g cosa = m 1 a ,

х 2: T – m 2 g = m 2 a .

, .

Так как а >0, то

Если неравенство (1) не выполняется, то груз т 2 точно не движется вверх! Тогда возможны еще два варианта: 1) система неподвижна; 2) груз т 2 движется вниз (а груз т 1 , соответственно, вверх).

Предположим, что груз т 2 движется вниз (рис. 14.8).

Рис. 14.8

Тогда уравнения второго закона Ньютона на оси х 1 и х 2 будут иметь вид:

х 1: Т – т 1 g sina mm 1 g cosa = m 1 a ,

х 2: m 2 g – Т = m 2 a .

Решая эту систему уравнений, находим:

, .

Так как а >0, то

Итак, если выполняется неравенство (1), то груз т 2 едет вверх, а если выполняется неравенство (2), то – вниз. Следовательно, если не выполняется ни одно из этих условий, т.е.

,

система неподвижна.

Осталось найти силу давления на ось блока (рис. 14.9). Силу давления на ось блока R в данном случае можно найти как диагональ ромба АВСD . Так как

ÐADC = 180° – 2 ,

где b = 90°– a, то по теореме косинусов

R 2 = .

Отсюда .

Ответ :

1) если , то , ;

2) если , то , ;

3) если , то а = 0; Т = т 2 g .

Во всех случаях .

СТОП! Решите самостоятельно: В13, В15.

Задача 14.4. На тележку массой М действует горизонтальная сила F (рис. 14.10,а ). Коэффициент трения между грузом т и тележкой равен m. Определить ускорение грузов. Какой должна быть минимальная сила F 0 , чтобы груз т начал скользить по тележке?

M , т F m а) б) Рис. 14.10
а 1 = ? а 2 = ? F 0 = ?

Решение . Сначала заметим, что сила, приводящая груз т в движение, – это сила трения покоя , с которой тележка действует на груз. Максимально возможное значение этой силы равно mmg .

По третьему закону Ньютона груз действует на тележку с такой же по величине силой – (рис. 14.10,б ). Проскальзывание начинается в тот момент, когда уже достигла своего максимального значения , но система еще движется как одно тело массой т +М с ускорением . Тогда по второму закону Ньютона

Движение. Теплота Китайгородский Александр Исаакович

Наклонная плоскость

Наклонная плоскость

Крутой подъем труднее преодолеть, чем отлогий. Легче вкатить тело на высоту по наклонной плоскости, чем поднимать его по вертикали. Почему так и насколько легче? Закон сложения сил позволяет нам разобраться в этих вопросах.

На рис. 12 показана тележка на колесах, которая натяжением веревки удерживается на наклонной плоскости. Кроме тяги на тележку действуют еще две силы – вес и сила реакции опоры, действующая всегда по нормали к поверхности, вне зависимости от того, горизонтальная поверхность опоры или наклонная.

Как уже говорилось, если тело давит на опору, то опора противодействует давлению или, как говорят, создает силу реакции.

Нас интересует, в какой степени тащить тележку вверх легче по наклонной плоскости, чем поднимать вертикально.

Разложим силы так, чтобы одна была направлена вдоль, а другая – перпендикулярно к поверхности, по которой движется тело. Для того чтобы тело покоилось на наклонной плоскости, сила натяжения веревки должна уравновешивать лишь продольную составляющую. Что же касается второй составляющей, то она уравновешивается реакцией опоры.

Найти интересующую нас силу натяжения каната T можно или геометрическим построением или при помощи тригонометрии. Геометрическое построение состоит в проведении из конца вектора веса P перпендикуляра к плоскости.

На рисунке можно отыскать два подобных треугольника. Отношение длины наклонной плоскости l к высоте h равно отношению соответствующих сторон в треугольнике сил. Итак,

Чем более отлога наклонная плоскость (h /l невелико), тем, разумеется, легче тащить тело вверх.

А теперь для тех, кто знает тригонометрию: так как угол между поперечной составляющей веса и вектором веса равен углу? наклонной плоскости (это углы со взаимно перпендикулярными сторонами), то

Итак, вкатить тележку по наклонной плоскости с углом? в sin ? раз легче, чем поднять ее вертикально.

Полезно помнить значения тригонометрических функций для углов 30, 45 и 60°. Зная эти цифры для синуса (sin 30° = 1/2; sin 45° = sqrt(2)/2;*5 sin 60° = sqrt(3)/2), мы получим хорошее представление о выигрыше в силе при движении по наклонной плоскости.

Из формул видно, что при угле наклонной плоскости в 30° наши усилия составят половину веса: T = P ·(1/2). При углах 45° и 60° придется тянуть канат с силами, равными примерно 0,7 и 0,9 от веса тележки. Как видим, такие крутые наклонные плоскости мало облегчают дело.

Пусть тело, способное вращаться (например, цилиндр), катится по наклонной плоскости. Будем предполагать, что при движении не возникает скольжения. Это означает, что скорость тела в точке касания А равна нулю. Отсутствие скольжения обеспечивается действием сил со стороны наклонной плоскости. На вращающееся тело действуют: сила тяжести , сила нормальной реакции опорыи сила трения
(рис. 1.5). Векторы этих сил на рисунке показаны исходящими из их точек приложения. При отсутствии скольжения сила трения
есть сила трения покоя или сила трения сцепления.

У равнение движения центра масс тела согласно второму закону Ньютона имеет вид:

.

В скалярной форме относительно оси х , направленной вдоль плоскости вниз, это уравнение имеет вид:

Вращение тела вокруг оси, проходящей через центр масс С, обусловлено только силой трения, так как моменты сил нормальной реакции опоры и тяжести равны нулю, поскольку линии действия этих сил проходят через ось вращения. Поэтому уравнение динамики вращательного движения имеет вид:

,

где I – момент инерции тела,
– угловое ускорение,r – радиус тела,
– момент силы трения. Следовательно:

(1.11)

Из выражений (1.10) и (1.11) имеем:

(1.12)

Применим закон сохранения энергии к движению цилиндра по наклонной плоскости. Кинетическая энергия вращающегося тела равна сумме кинетической энергии поступательного движения центра масс этого тела и вращательного движения точек тела относительно оси, проходящей через центр масс:

, (1.13)

где ω – угловая скорость, которая связана со скоростью центра масс соотношением:

. (1.14)

При отсутствии скольжения сила трения приложена к тем точкам тела, которые лежат на мгновенной оси вращения А . Мгновенная скорость таких точек равна нулю, а потому приложенная к ним сила трения сцепления работы не производит и не влияет на величину полной кинетической энергии скатывающегося тела. Роль силы трения сцепления сводится к тому, чтобы привести тело во вращение и обеспечить чистое качение. При наличии силы трения сцепления работа силы тяжести идет на увеличение кинетической энергии не только поступательного, но и вращательного движения тела. Следовательно, закон сохранения энергии тела, катящегося по наклонной плоскости, запишется в виде:

, (1.15)

где кинетическая энергия Е к определяется по формуле (1.13), а потенциальная энергия Е п = mgh .

2. Описание лабораторной установки

Лабораторная установка (рис. 2.1.) представляет собой наклонную плоскость 1, высотой h и длиной l . В верхней точке плоскости установлен фиксирующий механизм 2; в нижней – контрольный датчик 3, соединенный с секундомером 4.

3. Порядок выполнения работы

1. Эксперимент с поступательно движущимся телом

      Включить в сеть электронный блок посредством сетевого шнура.

      Поместить тело (брусок) в фиксирующий механизм 2, при этом показания секундомера должны быть на нуле.

      Отпустить тело, при этом оно будет скользить вниз вдоль наклонной плоскости. После того как тело коснется контрольного датчика 3, снять показания с секундомера. Опыт провести не менее пяти раз.

      Измерить массу бруска m .

      Измерить длину l и высоту h наклонной плоскости.

      Данные занести в таблицу 1.

Таблица 1

l ,

h ,

m ,

t ,

,

,

,


11. Записать закон сохранения энергии для движущегося тела (1.9), проверить его выполнение с учетом силы трения для средних значений ,,
. Указать точность выполнения этого закона в процентном соотношении.

Аналогично рычагу , наклонные плоскости уменьшают усилие, необходимое для подъема тел. Например, бетонный блок весом 45 килограммов поднять руками довольно сложно, однако втащить его наверх по наклонной плоскости вполне возможно. Вес тела, размещенного на наклонной плоскости, раскладывается на две составляющие, одна из которых параллельна, а другая перпендикулярна ее поверхности. Для перемещения блока вверх по наклонной плоскости человек должен преодолеть только параллельную составляющую, величина которой растет с увеличением угла наклона плоскости.

Наклонные плоскости весьма разнообразны по конструктивному выполнению. Например, винт состоит из наклонной плоскости (резьбы), обвивающей по спирали его цилиндрическую часть. При вворачивании винта в деталь, его резьба проникает в тело детали, образуя очень прочное соединение за счет большого трения между деталью и витками резьбы. Тиски преобразуют действие рычага и вращательное движение винта в линейную сдавливающую силу. По такому же принципу работает и домкрат, используемый для подъема тяжелых грузов.

Силы на наклонной плоскости

У тела, находящегося на наклонной плоскости, сила тяжести действует параллельно и перпендикулярно ее поверхности. Для перемещения тела вверх по наклонной плоскости необходима сила, равная по величине составляющей силы тяжести, параллельной поверхности плоскости.

Наклонные плоскости и винты

Родство винта с наклонной плоскостью легко проследить, если обернуть цилиндр разрезанным по диагонали листом бумаги. Образующаяся спираль идентична по расположению резьбе винта.

Силы, действующие на винт

При повороте винта его резьба создает очень большую силу, приложенную к материалу детали, в которую он ввернут. Эта сила тащит винт вперед, если он поворачивается по часовой стрелке, и назад, если он поворачивается против часовой стрелки.

Винт для подъема тяжестей

Вращающиеся винты домкратов развивают огромную силу, позволяя им поднимать столь тяжелые тела как легковые или грузовые автомобили. При повороте центрального винта рычагом два конца домкрата стягиваются вместе, производя необходимый подъем.

Наклонные плоскости для расщепления

Клин состоит из двух наклонных плоскостей, соединенных своими основаниями. При забивании клина в дерево наклонные плоскости развивают боковые силы, достаточные для расщепления самых прочных пиломатериалов.

Сила и работа

Несмотря на то, что наклонная плоскость может облегчить задачу, она не уменьшает количество работы, требующееся для ее выполнения. Подъем бетонного блока весом 45 кг (W) на 9 метров вертикально вверх (дальний рисунок справа) требует совершения работы 45x9 килограммометров, что соответствует произведению веса блока на величину перемещения. Когда блок находится на наклонной плоскости с углом наклона 44,5°, сила (F), необходимая для втаскивания блока, уменьшается до 70 процентов от его веса. Хотя это и облегчает перемещение блока, зато теперь, чтобы, поднять блок на высоту 9 метров, его необходимо тащить по плоскости 13 метров. Другими словами выигрыш в силе равен высоте подъема (9 метров), деленной на длину перемещения по наклонной плоскости (13 метров).