Средняя линия шестиугольника формула. Правильный шестиугольник. Примеры из реальной жизни

04.07.2020

Есть ли поблизости от Вас карандаш? Взгляните-ка на его сечение - оно представляет собой правильный шестиугольник или, как его еще называют, гексагон. Такую форму имеет также сечение гайки, поле гексагональных шахмат, некоторых сложных молекул углерода (к примеру, графит), снежинка, пчелиные соты и другие объекты. Гигантский правильный шестиугольник был недавно обнаружен в Не кажется ли странным столь частое использование природой для своих творений конструкций именно этой формы? Давайте рассмотрим поподробнее.

Правильный шестиугольник представляет собой многоугольник с шестью одинаковыми сторонами и равными углами. Из школьного курса нам известно, что он обладает следующими свойствами:

  • Длина его сторон соответствует радиусу описанной окружности. Из всех это свойство имеет лишь правильный шестиугольник.
  • Углы равны между собой, и величина каждого составляет 120°.
  • Периметр гексагона можно найти по формуле Р=6*R, если известен радиус описанной вокруг него окружности, или Р=4*√(3)*r, если окружность в него вписана. R и r - радиусы описанной и вписанной окружности.
  • Площадь, которую занимает правильный шестиугольник, определяется следующим образом: S=(3*√(3)*R 2)/2. Если радиус неизвестен, вместо него подставляем длину одной из сторон - как известно, она соответствует длине радиуса описанной окружности.

У правильного шестиугольника есть одна интересная особенность, благодаря которой он получил в природе такое широкое распространение, - он способен заполнить любую поверхность плоскости без наложений и пробелов. Существует даже так называемая лемма Пала, согласно которой правильный гексагон, сторона которого равна 1/√(3), представляет собой универсальную покрышку, то есть может покрыть любое множество с диаметром в одну единицу.

Теперь рассмотрим построение правильного шестиугольника. Есть несколько способов, самый простой из которых предполагает использование циркуля, карандаша и линейки. Вначале рисуем циркулем произвольную окружность, затем в произвольном месте на этой окружности делаем точку. Не меняя раствора циркуля, ставим острие в эту точку, отмечаем на окружности следующую насечку, продолжаем так до тех пор, пока не получим все 6 точек. Теперь остается лишь соединить их между собой прямыми отрезками, и получится искомая фигура.

На практике бывают случаи, когда требуется нарисовать шестиугольник большого размера. Например, на двухуровневом гипсокартонном потолке, вокруг места крепления центральной люстры, нужно установить на нижнем уровне шесть небольших светильников. Циркуль таких размеров найти будет очень и очень сложно. Как поступить в этом случае? Как вообще нарисовать большую окружность? Очень просто. Нужно взять крепкую нить нужной длины и обвязать один из ее концов напротив карандаша. Теперь осталось лишь найти помощника, который бы прижал к потолку в нужной точке второй конец нити. Конечно, в этом случае возможны незначительные погрешности, но вряд ли они вообще будут заметны постороннему человеку.

Чтобы найти площадь правильного шестиугольника онлайн по нужной вам формуле, введите в поля числа и нажмите кнопку «Посчитать онлайн».
Внимание! Числа с точкой (2.5) надо писать с точкой(.), а не с запятой!

1. Все углы правильного шестиугольника равны 120 °

2. Все стороны правильного шестиугольника идентичны друг другу

Регулярный шестиугольный периметр

4. Форма поверхности правильного шестиугольника

5. Радиус удаленной окружности правильного шестиугольника

6. Диаметр круглого круга нормального шестиугольника

7. Радиус введенной правильной шестиугольной окружности

8. Отношения между радиусами введенных и ограниченных кругов

как , и , и , из которого следует треугольник — прямоугольная с гипотенузой — это то же самое . Таким образом,

10. Длина AB равна

11. Формула сектора

Вычисление сегментов сегментов правильного шестиугольника

Рис. 1. Регулярные шестиугольные сегменты с разбивкой на одни и те же алмазы

1. Сторона правильного шестиугольника равна радиусу отмеченной окружности

2. Подключение точек с шестиугольником , мы получим ряд равных ромбов (рис.

с квадратами

Рис. Сегменты правильного шестиугольника с разбивкой на одни и те же треугольники

3. Добавить диагональ , , в ромбах мы получаем шесть одинаковых треугольников с поверхностями

3. Сегменты нормального шестиугольника с разбивкой на треугольники

4. Поскольку нормальный шестиугольник равен 120 °, площадь и они будут одинаковыми

5. Области и мы используем квадратную формулу реального треугольника .

Учитывая, что в нашем случае высота , но основой , мы его получаем

Площадь нормального шестиугольника Это число, которое характерно для правильного шестиугольника в единицах площади.

Настоящий шестиугольник (шестиугольник) Это шестиугольник, в котором все страницы и углы одинаковы.

[править] Легенда

Введите запись:

— длина страницы;

N — количество клиентов, n = 6 ;

р Является радиусом введенного круга;

R Это радиус круга;

α — половина центрального угла, α = π / 6 ;

P6 — размер правильного шестиугольника;

— поверхность равного треугольника с основанием, равным стороне, а боковые стороны равны радиусу окружности;

S6 Это область нормального шестиугольника.

[править] Формулы

Формула используется для области регулярного n-угольника в n = 6 :

S_6 = \ frac {3a ^ 2} {2} CTG \ frac {\ pi} {6} \ Leftrightarrow \ Leftrightarrow S_6 = 6S _ {\ triangle} \ S _ {\ triangle } = \ frac {e ^ 2} {4} CTG \ frac {\ pi} {6} \ Leftrightarrow \ Leftrightarrow S_6 = \ frac {1} {2} P_6r \ P_6 = \ right {\ math} {Math} \ Leftrightarrow S_6 = 6R ^ 2 \ sin \ frac {\ pi} {6} \ cos \ frac {{pi} Frac {\ pi} {6} \ R = \ frac {a} {2 \ sin \ frac {\ pi} {6}} \ Leftrightarrow \ Leftrightarrow S_6 = 6r ^ 2tg \ frac { pi} {6}, \ r = R \ cos \ frac {\ pi} {6}

Использование углов тригонометрического угла для углов α = π / 6 :

S_6 = \ FRAC {3 \ sqrt {3}} {2} ^ 2 \ Leftrightarrow \ Leftrightarrow S_6 = 6S _ {\ triangle} \ S _ {\ triangle} = \ FRAC { \ sqrt {3}} {4} ^ 2 \ Leftrightarrow \ Leftrightarrow S_6 = \ frac {1} {2} P_6r \ P_6 = 6a, \ r = \ FRAC {\ sqrt {3}} {2} A \ Leftrightarrow \ Leftrightarrow S_6 = \ FRAC {3 \ sqrt {3}} {2} R ^ 2, \ R = A \ Leftrightarrow \ \ r = \ frac {\ sqrt {3}} {2} R leftrightarrow S_6 = 2 \ sqrt {3} r ^ 2

где {Math} \ {pi \} sin \ frac {6} = \ frac {1} {2} \ cos \ frac {\ pi} {6} = \ FRAC {\ sqrt { 3}} {2} , tg \ frac {\ pi} {6} = \ frac {\ sqrt {3}} {3} pi} {6} = \ sqrt {3}

[править] Другие полигоны

Общая площадь гексагона // KhanAcademyNussian

Пчелы пчел становятся гексагональными без помощи пчел

Типичный сетчатый рисунок может быть выполнен, если ячейки треугольные, квадратные или шестиугольные.

Шестиугольная форма больше, чем остальное, позволяет вам хранить на стенах, оставляя на сотах меньше сока с такими клетками. Впервые эта «экономика» пчел была отмечена в IV. Century. E. и в то же время было высказано предположение, что пчелы при построении часов «должны управляться математическим планом».

Однако с исследователями из Университета Кардиффа пчелы технической славы сильно преувеличены: правильная геометрическая форма гексагональной сотовой ячейки возникает из-за появления их физической силы и только помощников насекомых.

Почему это прозрачно?

Марк Медовник

Рожденный из кристаллов?

Николай Юшкин

В их структуре простейшими простейшими биосистемами и кристаллами углеводородов являются простейшие.

Если такой минерал дополняется белковыми компонентами, то мы получаем настоящий прото-организм. Таким образом, начинается начало концепции кристаллизации происхождения жизни.

Споры о структуре воды

Маленков Г.Г.

Споры о структуре воды были предметом озабоченности в течение многих десятилетий в научном сообществе, а также в людях, не связанных с наукой. Этот интерес не случайен: структура воды иногда приписывается целебным свойствам, и многие считают, что эту структуру можно контролировать каким-то физическим методом или просто силой ума.

И каково мнение ученых, которые десятилетиями изучали тайны воды в жидком и твердом состоянии?

Мед и медолечение

Стоймир Младенов

Используя опыт других исследователей и результаты экспериментальных и клинических экспериментальных исследований, автор обращает внимание на целебные свойства пчел и метод его использования в медицине как часть их возможностей.

Чтобы сделать эту работу более устойчивой внешностью и дать читателю возможность получить более целостное представление об экономическом и медицинском значении пчел в книге, будут кратко обсуждаться и другие продукты пчел, которые неразрывно связаны с жизнью пчел, а именно пчел яд, маточное молочко, пыльца, воск и прополис, а также связь между наукой и этими продуктами.

Каустики в плоскости и во вселенной

Каустики представляют собой всеохватывающие оптические поверхности и кривые, которые возникают, когда свет отражается и разрушается.

Каустик можно описать как линии или поверхности с концентрированными лучом света.

Как работает транзистор?

Они повсюду: в каждом электрическом приборе, от телевизора до старого Тамагочи.

Мы ничего не знаем о них, потому что воспринимаем их как реальность. Но без них мир полностью изменился бы. Semiconductors. О том, что это такое и как это работает.

Пусть таракан окажется турбулентным

Международная команда ученых определила, насколько легко мухам летать в очень ветреную погоду. Оказалось, что даже в условиях значительных ударов особый механизм создания подъемных сил позволяет насекомым оставаться на ходу с минимальными дополнительными затратами энергии.

Установлен механизм самоорганизации нанокристаллов карбонатов и силикатов в биоморфной структуре

Елена Наймарк

Испанские ученые обнаружили механизм, который может вызвать спонтанное образование кристаллов карбонатов и силикатов очень сложной и необычной формы.

Эти кристаллические новообразования подобны биоморфам — неорганическим структурам, полученным при участии живых организмов. И механизм, приводящий к такой мимике, на удивление прост — это только спонтанное колебание рН раствора карбонатов и силикатов на границе между твердым кристаллом и жидкой средой, которая образуется.

Ложные образцы высокого давления

Комаров С.М.

с какой формулой найти область правильного шестиугольника со стр. 2?

  1. это шесть односторонних треугольников со стороной 2
    поверхность равностороннего треугольника равна а и квадратный корень 3, деленный на 4, где а = 2
  2. Площадь башни составляет 12 * основание высоты. Шестиугольник — шестигранный многоугольник, разделенный на шесть равных треугольников.

    все равносторонние треугольники с углом 60 градусов и стороной 2 см. найти высоту теоремы Пифагора 2 в квадратах = 1 высота квадрата на квадратный корень, поэтому высота = 3S = 12 * 2 * 3 + квадратный корень квадратный корень 3 часа TP 6 означает 6 корней 3

  3. Особенностью правильного шестиугольника является равенство его стороны t и радиус удаленной окружности (R = t).

    Нормальная площадь шестиугольника рассчитывается с использованием уравнения:

    Настоящий шестиугольник

  4. Нормальная площадь шестиугольника равна 3x для квадрата корня. 3 x R2 / 2, где R — радиус окружности вокруг него. В правильном шестиугольнике есть одна и та же сторона шестиугольника = 2, тогда площадь будет равна квадрату корня 6x. от 3.

Внимание, только СЕГОДНЯ!

Сторон. Р = а1+а2+а3+а4+а5+а6,где P – периметр шестиугольника , а а1, а2 … а6 – длины его сторон.Единицы измерения каждой из сторон приведите к одному виду – в этом случае достаточно будет сложить только числовые значения длин сторон. Единица измерения периметра шестиугольника будет совпадать с единицей измерения сторон.

Примеры из реальной жизни

Геометрия - это отрасль математики, которая занимается изучением форм различных измерений и анализом их свойств. В этом исследовании форм многоугольное семейство является одной из наиболее часто изучаемых фигур. Многоугольники закрыты 2-мерными плоскими объектами, которые имеют прямые стороны. Многоугольник, состоящий из 6 сторон и 6 углов, известен как шестиугольник. Любая замкнутая плоская двумерная структура с 6 прямыми сторонами будет называться шестиугольником. Слово «шестнадцатеричный» означает 6, а «угол» относится к углу.

Пример.Имеется шестиугольник с длинами сторон 1 см, 2 мм, 3 мм, 4 мм, 5 мм, 6 мм. Требуется найти его периметр.Решение.1. Единица измерения первой стороны (см) отличается от единиц измерения длин остальных сторон (мм). Поэтому, переведите: 1 см = 10 мм.2. 10+2+3+4+5+6=30 (мм).

Если шестиугольник правильный, то чтобы найти его периметр, умножьте длину его стороны на шесть:Р = а * 6,где а – длина стороны правильного шестиугольника .Пример.Найти периметр правильного шестиугольника с длиной стороны равной 10 см.Решение: 10 * 6 = 60 (см).

Как показано на диаграмме ниже, шестиугольник имеет 6 сторон или края, 6 углов и 6 вершин. Площадь шестиугольника - это пространство, занимаемое в границах шестиугольника. Используя измерения стороны и угла, мы можем найти область шестиугольника. Шестиугольники можно наблюдать в разных формах в нашей красивой природе . На приведенном ниже рисунке показана заштрихованная часть внутри границ шестиугольника, которая называется зоной шестиугольника.

Этот тип шестиугольника также не имеет 6 равных углов. Если вершины нерегулярного шестиугольника направлены наружу, то он известен как выпуклый нерегулярный шестиугольник, а если вершины шестиугольника направлены внутрь, то он известен как вогнутый нерегулярный шестиугольник, как показано на рисунке ниже. Поскольку измерения сторон и углов неравны, поэтому мы должны использовать разные стратегии, чтобы найти область нерегулярного шестиугольника. Метод вычисления площади правильного шестиугольника отличается от метода расчета площади нерегулярного шестиугольника.

Правильный шестиугольник обладает уникальным свойством: радиус описанной вокруг такого шестиугольника окружности равен длине его стороны. Поэтому, если известен радиус описанной окружности, до воспользуйтесь формулой:P = R * 6,где R – радиус описанной окружности.

Область регулярного шестиугольника: правильный шестиугольник имеет все 6 сторон и 6 углов, равных по мере. Когда тянутся диагонали, проходящие через центр шестиугольника, образуются 6 равносторонних треугольников одинакового размера. Если рассчитывается площадь одного равностороннего треугольника, то мы можем легко вычислить площадь данного правильного шестиугольника. Следовательно, все его стороны также равны.

Теперь правильный шестиугольник состоит из 6 таких конгруэнтных равносторонних треугольников. Пример 1: Какова площадь правильного шестиугольника, длина которого составляет 8 см? Пример 2: Если площадь правильного шестиугольника составляет √12 квадратных футов, то какова длина стороны шестиугольника?

Пример.Рассчитать периметр правильного шестиугольника , писанного в окружность диаметром 20 см.Решение. Радиус описанной окружности будет равен: 20/2=10 (см).Следовательно, периметр шестиугольника : 10 * 6 = 60 (см).

Пример: найдите область нерегулярного шестиугольника, показанного на рисунке ниже. Шестиугольные сетки используются в некоторых играх, но они не так просты или распространены как квадратные сетки. Многие части этой страницы являются интерактивными; выбор типа сетки будет обновлять диаграммы, код и текст для соответствия. Образцы кода на этой странице написаны в псевдокоде; они предназначены для легкого чтения и понимания, чтобы вы могли написать свою собственную реализацию.

Шестиугольники - это шестигранные многоугольники. Обычные шестиугольники имеют все стороны одинаковой длины. Типичные ориентации для гексарифмических сеток являются горизонтальными и вертикальными. Каждое ребро разделяется двумя шестиугольниками. Каждый угол разделяется тремя шестиугольниками. В моей статье о частях сетки. В правильном шестиугольнике внутренние углы 120 °. Есть шесть «клиньев», каждый из которых равносторонний треугольник с углами 60 ° внутри.

Если по условиям задачи задан радиус вписанной окружности, то примените формулу:P = 4 * √3 * r,где r – радиус вписанной в правильный шестиугольник окружности.

Если известна площадь правильного шестиугольника , то для расчета периметра используйте следующее соотношение:S = 3/2 * √3 * а²,где S – площадь правильного шестиугольника . Отсюда можно найти а = √(2/3 * S / √3), следовательно:Р = 6 * а = 6 * √(2/3 * S / √3) = √(24 * S / √3) = √(8 * √3 * S) = 2√(2S√3).

Учитывая гексагон, который 6 гексов соседствуют с ним? Как и следовало ожидать, ответ прост с координатами куба, все еще довольно простой с осевыми координатами и немного сложнее с координатами смещения. Мы могли бы также захотеть рассчитать 6 диагональных гексов.

Учитывая местоположение и расстояние, что видно из этого места, а не заблокировано препятствиями? Самый простой способ сделать это - нарисовать линию для каждого гексагонального диапазона. Если линия не ударяет по стенам, вы можете увидеть гекс. Мышь над шестнадцатеричным, чтобы увидеть, как линия тянется к этому гексу, и к каким стенам он попадает.

По определению из планиметрии правильным многоугольником называется выпуклый многоугольник, у которого стороны равны между собой и углы так же равны между собой. Правильный шестиугольник является правильным многоугольником, с числом сторон равным шести. Существует несколько формул для расчета площади правильного многоугольника.

  • Выпуклый семиугольник - это тот, у которого нет тупых внутренних углов.
  • Вогнутая спираль - одна с тупым внутренним углом.
Формулы для расчета площади и периметра семиугольника варьируются в зависимости от того, является ли он регулярным или нерегулярным семиугольником.

где а – длина стороны правильного шестиугольника.

Пример.
Найти периметр правильного шестиугольника с длиной стороны равной 10 см.
Решение: 10 * 6 = 60 (см).

Правильный шестиугольник обладает уникальным свойством: радиус описанной вокруг такого шестиугольника окружности равен длине его стороны. Поэтому, если известен радиус описанной окружности, до воспользуйтесь формулой:

где R – радиус описанной окружности.

Пример.
Рассчитать периметр правильного шестиугольника, писанного в окружность диаметром 20 см.
Решение.
Радиус описанной окружности будет равен: 20/2=10 (см).
Следовательно, периметр шестиугольника: 10 * 6 = 60 (см). Если по условиям задачи задан радиус вписанной окружности, то примените формулу:

где r – радиус вписанной в правильный шестиугольник окружности.

Если известна площадь правильного шестиугольника, то для расчета периметра используйте следующее соотношение:

S = 3/2 * v3 * а?,

где S – площадь правильного шестиугольника.
Отсюда можно найти а = v(2/3 * S / v3), следовательно:

Р = 6 * а = 6 * v(2/3 * S / v3) = v(24 * S / v3) = v(8 * v3 * S) = 2v(2Sv3).

Как просто

Тему многоугольников проходят в школьной программе, но не уделяют ей достаточного внимания. А между тем она интересна, и особенно это касается правильного шестиугольника или гексагона - ведь эту форму имеют многие природные объекты. К ним относятся пчелиные соты и многое другое. Эта форма очень хорошо применяется на практике.

Определение и построение

Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

Если вспомнить формулу суммы углов многоугольника

то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

Пошаговая инструкция будет выглядеть так:

При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ - равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС - очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

Вписанная окружность

Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2 .

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4 ,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а , или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

S=3(2r/√3)²(√3)/2=r²(2√3)

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников - равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам - ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

Таким образом, фигура отвечает признакам правильного шестиугольника - у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина - это радиус вписанной в маленький гексагон окружности:

r₂=а/2

S=(3(√3)/2)(а(√3)/3)²=а(√3)/2

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

От теории к практике

Свойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек - шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности - то есть расстоянию между противоположными гранями.

Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

Выпускается и бетонная плитка для мощения.

Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.


Математические свойства


Особенность правильного шестиугольника - равенство его стороны и радиуса описанной окружности , поскольку

Все углы равны 120°.

Радиус вписанной окружности равен:

Периметр правильного шестиугольника равен:


Площадь правильного шестиугольника рассчитывается по формулам:

Шестиугольники замощают плоскость, то есть могут заполнять плоскость без пробелов и наложений, образуя так называемый паркет.

Шестиугольный паркет (шестиугольный паркетаж) - замощение плоскости равными правильными шестиугольниками, расположенными сторона к стороне.

Шестиугольный паркет является двойственным треугольному паркету: если соединить центры смежных шестиугольников, то проведённые отрезки дадут треугольный паркетаж. Символ Шлефли шестиугольного паркета - {6,3}, что означает, что в каждой вершине паркета сходятся три шестиугольника.

Шестиугольный паркет является наиболее плотной упаковкой кругов на плоскости. В двумерном евклидовом пространстве наилучшим заполнением является размещение центров кругов в вершинах паркета, образованного правильными шестиугольниками, в котором каждый круг окружен шестью другими. Плотность данной упаковки равна . В 1940 году было доказано, что данная упаковка является самой плотной.

Правильный шестиугольник со стороной является универсальной покрышкой, то есть всякое множество диаметра можно покрыть правильным шестиугольником со стороной (лемма Пала).

Правильный шестиугольник можно построить с помощью циркуля и линейки. Ниже приведён метод построения, предложенный Евклидом в «Началах», книга IV, теорема 15.

Правильный шестиугольник в природе, технике и культуре


показывают разбиение плоскости на правильные шестиугольники. Шестиугольная форма больше остальных позволяет сэкономить на стенках, то есть на соты с такими ячейками уйдёт меньше воска.

Некоторые сложные кристаллы и молекулы , например графит, имеют гексагональную кристаллическую решётку.

Образуется, когда микроскопические капли воды в облаках притягиваются к пылевым частицам и замерзают. Появляющиеся при этом кристаллы льда, не превышающие поначалу 0,1 мм в диаметре, падают вниз и растут в результате конденсации на них влаги из воздуха. При этом образуются шестиконечные кристаллические формы. Из-за структуры молекул воды между лучами кристалла возможны углы лишь в 60° и 120°. Основной кристалл воды имеет в плоскости форму правильного шестиугольника. На вершинах такого шестиугольника затем осаждаются новые кристаллы, на них - новые, и так получаются разнообразные формы звёздочек-снежинок.

Учёные из Оксфордского университета смогли в лабораторных условиях смоделировать возникновение подобного гексагона. Чтобы выяснить, как возникает такое образование, исследователи поставили на вертящийся стол 30-литровый баллон с водой. Она моделировала атмосферу Сатурна и её обычное вращение. Внутри учёные поместили маленькие кольца, вращающиеся быстрее ёмкости. Это генерировало миниатюрные вихри и струи, которые экспериментаторы визуализировали при помощи зелёной краски. Чем быстрее вращалось кольцо, тем больше становились вихри, заставляя близлежащий поток отклоняться от круговой формы. Таким образом авторам опыта удалось получить различные фигуры - овалы, треугольники, квадраты и, конечно, искомый шестиугольник.

Памятник природы из примерно 40 000 соединённых между собой базальтовых (реже андезитовых) колонн, образовавшихся в результате древнего извержения вулкана. Расположен на северо-востоке Северной Ирландии в 3 км к северу от города Бушмилса.

Верхушки колонн образуют подобие трамплина, который начинается у подножья скалы и исчезает под поверхностью моря. Большинство колонн шестиугольные, хотя у некоторых четыре, пять, семь и восемь углов. Самая высокая колонна высотой около 12 м.

Около 50-60 миллионов лет назад, во время палеогенового периода, месторасположение Антрим подвергалось интенсивной вулканической активности, когда расплавленный базальт проникал через отложения, формируя обширные лавовые плато. По мере быстрого охлаждения происходило сокращение объёма вещества (подобное наблюдается при высыхании грязи). Горизонтальное сжатие приводило к характерной структуре шестигранных столбов.

Сечение гайки имеет вид правильного шестиугольника.