Как найти массовую долю? Массовая доля химического элемента в сложном веществе

18.10.2019

В статье рассматривается такое понятие, как массовая доля. Приводятся способы ее вычисления. Также описаны определения сходных по звучанию, но отличных по физическому смыслу величин. Это массовые доли для элемента и выхода.

Колыбель жизни - раствор

Вода - источник жизни на нашей прекрасной голубой планете. Это выражение можно встретить довольно часто. Однако мало кто, кроме специалистов, задумывается: на самом деле субстратом для развития первых биологических систем стал раствор веществ, а не химически чистая вода. Наверняка в популярной литературе или передаче читатель встречал выражение «первичный бульон».

Об источниках, давших толчок развитию жизни в виде сложных органических молекул, до сих пор спорят. Некоторые даже предполагают не просто естественное и весьма удачное стечение обстоятельств, а космическое вмешательство. Причем речь идет вовсе не о мифических пришельцах, а о специфических условиях для создания этих молекул, которые могут существовать только на поверхности малых космических тел, лишенных атмосферы, - кометах и астероидах. Таким образом, было бы правильнее говорить, что раствор органических молекул - колыбель всего живого.

Вода как химически чистое вещество

Несмотря на огромные соленые океаны и моря, пресные озера и реки, в химически чистом виде вода встречается крайне редко, в основном в специальных лабораториях. Напомним, в отечественной научной традиции химически чистое вещество - это субстанция, которая содержит не более десяти в минус шестой степени массовой доли примесей.

Получение абсолютно свободной от посторонних компонентов массы требует невероятных затрат и редко себя оправдывает. Применяется только в отдельных производствах, где даже один посторонний атом может испортить эксперимент. Отметим, что полупроводниковые элементы, которые составляют основу сегодняшней миниатюрной техники (в том числе смартфоны и планшеты), к примесям очень чувствительны. В их создании как раз и нужны совершенно незагрязненные растворители. Однако по сравнению со всей жидкостью планеты это ничтожно мало. Как же так получается, что распространенная, пронизывающая нашу планету насквозь вода так редко встречается в чистом виде? Объясним чуть ниже.

Идеальный растворитель

Ответ на поставленный в предыдущем разделе вопрос невероятно прост. Вода имеет полярные молекулы. Это значит, что в каждой мельчайше частице этой жидкости положительный и отрицательный полюсы не намного, но разнесены. При этом структуры, возникающие даже в жидкой воде, создают дополнительные (так называемые водородные) связи. И в общей сложности это дает следующий результат. Попадающее в воду вещество (не важно, какой заряд оно имеет) растаскивается молекулами жидкости. Каждая частичка растворенной примеси обволакивается либо отрицательными, либо положительными сторонами молекул воды. Таким образом, эта уникальная жидкость способна растворять очень большое количество самых разнообразных веществ.

Понятие массовой доли в растворе

Получающийся раствор содержит некоторую часть примеси, имеющей название "массовая доля". Хотя такое выражение встречается не часто. Обычно используется другой термин - "концентрация". Массовая доля определяется конкретным соотношением. Формульное выражение приводить не будем, оно достаточно простое, объясним лучше физический смысл. Это соотношение двух масс - примеси к раствору. Массовая доля - величина безразмерная. Выражается по-разному в зависимости от конкретных задач. То есть в долях единицы, если в формуле есть только соотношение масс, и в процентах - если результат умножается на 100%.

Растворимость

Помимо Н 2 О применяются и другие растворители. Кроме того, есть вещества, которые принципиально не отдают свои молекулы воде. Зато с легкостью растворяются в бензине или горячей серной кислоте.

Существуют специальные таблицы, которые показывают, сколько того или иного материала останется в жидкости. Этот показатель называется растворимостью, и он зависит от температуры. Чем она выше, тем активнее двигаются атомы или молекулы растворителя, и тем больше примеси он способен поглотить.

Варианты определения доли растворенного вещества в растворе

Так как задачи у химиков и технологов, а также инженеров и физиков могут быть разными, часть растворенного вещества в воде определяется по-разному. Объемная доля вычисляется как объем примеси к общему объему раствора. Используется другой параметр, однако принцип остается тем же.

Объемная доля сохраняет безразмерность, выражаясь либо в долях единицы, либо в процентах. Молярность (по-другому еще называется "молярная объемная концентрация") - это число молей растворенного вещества в заданном объеме раствора. В этом определении участвуют уже два различных параметра одной системы, и размерность у данной величины другая. Она выражается в молях на литр. На всякий случай напомним, что моль - это количество вещества, содержащего примерно десять в двадцать третьей степени молекул или атомов.

Понятие массовой доли элемента

Эта величина имеет лишь косвенное отношение к растворам. Массовая доля элемента отличается от рассмотренного выше понятия. Любое сложное химическое соединение состоит из двух или более элементов. Каждый обладает своей относительной массой. Эту величину можно найти в химической системе Менделеева. Там она указана в нецелых числах, но для приблизительных задач значение можно округлить. В состав сложного вещества входит определенное количество атомов каждого вида. Например, в воде (Н 2 О) два атома водорода и один кислорода. Соотношение между относительной массой всего вещества и данного элемента в процентах и будет составлять массовую долю элемента.

Для неискушенного читателя эти два понятия могут показаться близкими. И достаточно часто их путают между собой. Массовая доля выхода относится не к растворам, а к реакциям. Любой химический процесс всегда протекает с получением конкретных продуктов. Их выход рассчитывается по формулам в зависимости от реагирующих веществ и условий процесса. В отличие от просто массовой доли, эту величину не так просто определить. Теоретические расчеты предлагают максимально возможное количество вещества продукта реакции. Однако практика всегда дает немного меньшее значение. Причины такого расхождения кроются в распределении энергий среди даже сильно нагретых молекул.

Таким образом, всегда найдутся наиболее «холодные» частицы, которые не смогут вступить в реакцию и останутся в первоначальном состоянии. Физический смысл массовой доли выхода состоит в том, какой процент составляет реально полученное вещество от теоретически рассчитанного. Формула невероятно проста. Масса практически полученного продукта делится на массу практически рассчитанного, все выражение умножается на сто процентов. Массовая доля выхода определяется по количеству молей реагирующего вещества. Не стоит забывать об этом. Дело в том, что один моль вещества - определенное количество его атомов или молекул. По закону сохранения вещества из двадцати молекул воды не может получиться тридцать молекул серной кислоты, поэтому задачи вычисляются именно так. Из количества молей исходного компонента выводят массу, которая теоретически возможна для результата. Затем, зная, сколько продукта реакции на самом деле было получено, по описанной выше формуле определяют массовую долю выхода.

Даже в одном грамме вещества может содержаться до тысячи различных соединений. Каждое соединение отвечает за определенное свойство вещества, а бывает так, что это не определенное вещество, а смесь. В любом случае на производстве часто возникает ситуация утилизации химических отходов и задача использования вторичного сырья. Именно химические реакции, позволяющие найти и выделить определенное вещество являются главенствующими. Но для этого надо сначала узнать как найти массовую долю.

Понятие массовой доли вещества отражает его содержание и концентрацию в сложной химической структуре, будь то смесь или сплав. Зная общую массу сплава или смеси, можно найти массы составляющих их веществ, при условии, что известны их массовые доли. Как найти массовую долю, формула обычно выражается в виде дроби: массовая доля вещества масса вещества/масса всей смеси.

Давайте проведем небольшой эксперимент! Для этого нам понадобятся периодическая таблица химических элементов им. Менделеева, весы и калькулятор.

Как найти массовую долю вещества

Необходимо определить массовую долю вещества, вещество находится в виде смеси. Первоначально кладем на весы само вещество. Получили массу вещества. Зная определенную массу вещества в смеси мы с легкостью получим его массовую долю. К примеру есть 170г. воды. В них находится 30 грамм вишневого сока. Общая масса=170+30=230 грамм. Поделим массу вишневого сока к общей массе смеси: 30/200=0.15 или 15% .

Как найти массовую долю раствора

Решение данной проблемы может понадобиться при определении концентрации пищевых растворов(уксус) или лекарственных препаратов. Дана масса раствора KOH, он же гидроксид калия, массой в 400 грамм. KOH (масса самого вещества) составляет 80 грамм. Необходимо найти массовую долю желчи в полученном растворе. Формула нахождения решения: KOH (масса раствора гидроксида калия) 300 г, масса растворенного вещества (KOH) 40 г. Найдите KOH (массовую долю щелочи) в полученном растворе, t- массовая доля. m- масса, t (вещества) = 100%* m (вещества) / m (раствора (вещества). Таким образом KOH (массовая доля раствора гидроксида калия): t (KOH) = 80 г /400 г х 100% = 20 %.

Как найти массовую долю углерода в углеводороде

Для этого используем таблицу Менделеева. Ищем вещества в таблице. В таблице приведена атомная масса элементов. 6 углеродов с атомной массой 12 и 12 водородов с атомной массой равной 1. m (C6H12) = 6 х 12 + 12 х 1= 84 г/моль, ω (С) = 6 m1(С) / m (C6H12) = 6 х 12 / 84 = 85%

Определение массовой доли на производствах производится в специальных химических лабораториях. Для начала берется небольшой образец, на который испытывают различные химические реакции. Или внедряют лакмусовые бумажки, которые могут показать наличие того или иного компонента. После выяснения первоначальной структуры вещества можно начинать выделение компонентов. Это достигается за счет простых химических реакций, когда одно вещество контактирует с другим и получается новое, возможен осадок. Существуют и более продвинутые способы, такие как электролиз, нагревание, охлаждение, выпаривание. Для подобных реакций нужно большое промышленное оборудование. Производство, конечно, тяжело назвать экологически чистым, тем не менее современные технологии обработки отходов позволяют минимизировать нагрузку на природу.

Задача 3.1. Определите массу воды в 250 г 10%-ного раствора хлорида натрия.

Решение. Из w = m в-ва / m р-ра находим массу хлорида натрия:
m в-ва = w m р-ра = 0,1 250 г = 25 г NaCl
Поскольку m р-ра = m в-ва + m р-ля , то получаем:
m(Н 2 0) = m р-ра — m в-ва = 250 г — 25 г = 225 г Н 2 0 .

Задача 3.2. Определите массу хлороводорода в 400 мл раствора соляной кислоты с массовой долей 0,262 и плотностью 1,13 г/мл.

Решение. Поскольку w = m в-ва / (V ρ) , то получаем:
m в-ва = w V ρ = 0,262 400 мл 1,13 г/мл = 118 г

Задача 3.3. К 200 г 14%-ного раствора соли добавили 80 г воды. Определите массовую долю соли в полученном растворе.

Решение. Находим массу соли в исходном растворе:
m соли = w m р-ра = 0,14 200 г = 28 г.
Эта же масса соли осталась и в новом растворе. Находим массу нового раствора:
m р-ра = 200 г + 80 г = 280 г.
Находим массовую долю соли в полученном растворе:
w = m соли / m р-ра = 28 г / 280 г = 0,100.

Задача 3.4. Какой объем 78%-ного раствора серной кислоты с плотностью 1,70 г/мл надо взять для приготовления 500 мл 12%-ного раствора серной кислоты с плотностью 1,08 г/мл?

Решение. Для первого раствора имеем:
w 1 = 0,78 и ρ 1 = 1,70 г/мл .
Для второго раствора имеем:
V 2 = 500 мл, w 2 = 0,12 и ρ 2 = 1,08 г/мл .
Поскольку второй раствор готовим из первого добавлением воды, то массы вещества в обоих растворах одинаковы. Находим массу вещества во втором растворе. Из w 2 = m 2 / (V 2 ρ 2) имеем:
m 2 = w 2 V 2 ρ 2 = 0,12 500 мл 1,08 г/мл = 64,8 г.
m 2 = 64,8 г . Находим
объем первого раствора. Из w 1 = m 1 / (V 1 ρ 1) имеем:
V 1 = m 1 / (w 1 ρ 1) = 64,8 г / (0,78 1,70 г/мл) = 48,9 мл.

Задача 3.5. Какой объем 4,65%-ного раствора гидроксида натрия с плотностью 1,05 г/мл можно приготовить из 50 мл 30%-ного раствора гидроксида натрия с плотностью 1,33 г/мл?

Решение. Для первого раствора имеем:
w 1 = 0,0465 и ρ 1 = 1,05 г/мл .
Для второго раствора имеем:
V 2 = 50 мл , w 2 = 0,30 и ρ 2 = 1,33 г/мл .
Поскольку первый раствор готовим из второго добавлением воды, то массы вещества в обоих растворах одинаковы. Находим массу вещества во втором растворе. Из w 2 = m 2 / (V 2 ρ 2) имеем:
m 2 = w 2 V 2 ρ 2 = 0,30 50 мл 1,33 г/мл = 19,95 г.
Масса вещества в первом растворе также равна m 2 = 19,95 г .
Находим объем первого раствора. Из w 1 = m 1 / (V 1 ρ 1) имеем:
V 1 = m 1 / (w 1 ρ 1) = 19,95 г / (0,0465 1,05 г/мл) = 409 мл .
Коэффициент растворимости (растворимость) - максимальная масса вещества, растворимая в 100 г воды при данной температуре. Насыщенный раствор - это раствор вещества, который находится в равновесии с имеющимся осадком этого вещества.

Задача 3.6. Коэффициент растворимости хлората калия при 25 °С равен 8,6 г. Определите массовую долю этой соли в насыщенном растворе при 25 °С.

Решение. В 100 г воды растворилось 8,6 г соли.
Масса раствора равна:
m р-ра = m воды + m соли = 100 г + 8,6 г = 108,6 г ,
а массовая доля соли в растворе равна:
w = m соли / m р-ра = 8,6 г / 108,6 г = 0,0792 .

Задача 3.7. Массовая доля соли в насыщенном при 20 °С растворе хлорида калия равна 0,256. Определите растворимость этой соли в 100 г воды.

Решение. Пусть растворимость соли равна х г в 100 г воды.
Тогда масса раствора равна:
m р-ра = m воды + m соли = (х + 100) г ,
а массовая доля равна:
w = m соли / m р-ра = х / (100 + х) = 0,256 .
Отсюда
х = 25,6 + 0,256х; 0,744х = 25,6; х = 34,4 г на 100 г воды.
Молярная концентрация с - отношение количества растворенного вещества v (моль) к объему раствора V (в литрах) , с = v(моль) / V(л) , с = m в-ва / (М V(л)) .
Молярная концентрация показывает число моль вещества в 1 л раствора: если раствор децимолярный (с = 0,1 М = 0,1 моль/л ) значит, что в 1 л раствора содержится 0,1 моль вещества.

Задача 3.8. Определите массу КОН, необходимую для приготовления 4 л 2 М раствора.

Решение. Для растворов с молярной концентрацией имеем:
с = m / (М V) ,
где с - молярная концентрация,
m - масса вещества,
М - молярная масса вещества,
V - объем раствора в литрах.
Отсюда
m = с М V(л) = 2 моль/л 56 г/моль 4 л = 448 г КОН .

Задача 3.9. Сколько мл 98%-ного раствора Н 2 SO 4 (ρ = 1,84 г/мл) необходимо взять для приготовления 1500 мл 0,25 М раствора?

Решение. Задача на разбавление раствора. Для концентрированного раствора имеем:
w 1 = m 1 / (V 1 (мл) ρ 1) .
Необходимо найти объем этого раствора V 1 (мл) = m 1 / (w 1 ρ 1) .
Поскольку разбавленный раствор готовится из концентрированного смешиванием последнего с водой, то масса вещества в этих двух растворах будет одинакова.
Для разбавленного раствора имеем:
с 2 = m 2 / (М V 2 (л)) и m 2 = с 2 М V 2 (л) .
Найденное значение массы подставляем в выражение для объема концентрированного раствора и проводим необходимые вычисления:
V 1 (мл) = m / (w 1 ρ 1) = (с 2 М V 2) / (w 1 ρ 1) = (0,25 моль/л 98 г/моль 1,5 л) / (0,98 1,84 г/мл) = 20,4 мл .

Раствором называют гомогенную смесь двух или более компонентов.

Вещества, смешением которых получен раствор, называют его компонентами .

Среди компонентов раствора различают растворенное вещество , которое может быть не одно, и растворитель . Например, в случае раствора сахара в воде сахар является растворенным веществом, а вода является растворителем.

Иногда понятие растворитель может быть применимо в равной степени к любому из компонентов. Например, это касается тех растворов, которые получены смешением двух или более жидкостей, идеально растворимых друг в друге. Так, в частности, в растворе, состоящем из спирта и воды, растворителем может быть назван как спирт, так и вода. Однако чаще всего в отношении водосодержащих растворов традиционно растворителем принято называть воду, а растворенным веществом — второй компонент.

В качестве количественной характеристики состава раствора чаще всего используют такое понятие, как массовая доля вещества в растворе. Массовой долей вещества называют отношение массы этого вещества к массе раствора, в котором оно содержится:

где ω (в-ва) – массовая доля вещества, содержащегося в растворе (г), m (в-ва) – масса вещества, содержащегося в растворе (г), m(р-ра) – масса раствора (г).

Из формулы (1) следует, что массовая доля может принимать значения от 0 до 1, то есть составляет доли единицы. В связи с этим массовую долю можно также выражать в процентах (%), причем именно в таком формате она фигурирует практически во всех задачах. Массовая доля, выраженная в процентах, рассчитывается по формуле, схожей с формулой (1) с той лишь разницей, что отношение массы растворенного вещества к массе всего раствора умножают на 100%:

Для раствора, состоящего только из двух компонентов, могут быть соответственно рассчитаны массовые доли растворенного вещества ω(р.в.) и массовая доля растворителя ω(растворителя).

Массовую долю растворенного вещества называют также концентрацией раствора .

Для двухкомпонентного раствора его масса складывается из масс растворенного вещества и растворителя:

Также в случае двухкомпонентного раствора сумма массовых долей растворенного вещества и растворителя всегда составляет 100%:

Очевидно, что, помимо записанных выше формул, следует знать и все те формулы, которые напрямую из них математически выводятся. Например:

Также необходимо помнить формулу, связывающую массу, объем и плотность вещества:

m = ρ∙V

а также обязательно нужно знать, что плотность воды равна 1 г/мл. По этой причине объем воды в миллилитрах численно равен массе воды в граммах. Например, 10 мл воды имеют массу 10 г, 200 мл — 200 г и т.д.

Для того чтобы успешно решать задачи, помимо знания указанных выше формул, крайне важно довести до автоматизма навыки их применения. Достичь этого можно только прорешиванием большого количества разнообразных задач. Задачи из реальных экзаменов ЕГЭ на тему «Расчеты с использованием понятия «массовая доля вещества в растворе»» можно порешать .

Примеры задач на растворы

Пример 1

Рассчитайте массовую долю нитрата калия в растворе, полученном смешением 5 г соли и 20 г воды.

Решение:

Растворенным веществом в нашем случае является нитрат калия, а растворителем — вода. Поэтому формулы (2) и (3) могут быть записаны соответственно как:

Из условия m(KNO 3) = 5 г, а m(Н 2 O) = 20 г, следовательно:

Пример 2

Какую массу воды необходимо добавить к 20 г глюкозы для получения 10%-ного раствора глюкозы.

Решение:

Из условий задачи следует, что растворенным веществом является глюкоза, а растворителем — вода. Тогда формула (4) может быть записана в нашем случае так:

Из условия мы знаем массовую долю (концентрацию) глюкозы и саму массу глюкозы. Обозначив массу воды как x г, мы можем записать на основе формулы выше следующее равносильное ей уравнение:

Решая это уравнение находим x:

т.е. m(H 2 O) = x г = 180 г

Ответ: m(H 2 O) = 180 г

Пример 3

150 г 15%-ного раствора хлорида натрия смешали со 100 г 20%-ного раствора этой же соли. Какова массовая доля соли в полученном растворе? Ответ укажите с точностью до целых.

Решение:

Для решения задач на приготовление растворов удобно использовать следующую таблицу:

1-й раствор
2-й раствор
3-й раствор
m р.в.
m р-ра
ω р.в.

где m р.в. , m р-ра и ω р.в. — значения массы растворенного вещества, массы раствора и массовой доли растворенного вещества соответственно, индивидуальные для каждого из растворов.

Из условия мы знаем, что:

m (1) р-ра = 150 г,

ω (1) р.в. = 15%,

m (2) р-ра = 100 г,

ω (1) р.в. = 20%,

Вставим все эти значения в таблицу, получим:

Нам следует вспомнить следующие формулы, необходимые для расчетов:

ω р.в. = 100% ∙ m р.в. /m р-ра, m р.в. = m р-ра ∙ ω р.в. /100% , m р-ра = 100% ∙ m р.в. /ω р.в.

Начинаем заполнять таблицу.

Если в строчке или столбце отсутствует только одно значение, то его можно посчитать. Исключение — строчка с ω р.в. , зная значения в двух ее ячейках, значение в третьей рассчитать нельзя.

В первом столбце отсутствует значение только в одной ячейке. Значит мы можем рассчитать его:

m (1) р.в. = m (1) р-ра ∙ ω (1) р.в. /100% = 150 г ∙ 15%/100% = 22,5 г

Аналогично у нас известны значения в двух ячейках второго столбца, значит:

m (2) р.в. = m (2) р-ра ∙ ω (2) р.в. /100% = 100 г ∙ 20%/100% = 20 г

Внесем рассчитанные значения в таблицу:

Теперь у нас стали известны два значения в первой строке и два значения во второй строке. Значит мы можем рассчитать недостающие значения (m (3)р.в. и m (3)р-ра):

m (3)р.в. = m (1)р.в. + m (2)р.в. = 22,5 г + 20 г = 42,5 г

m (3)р-ра = m (1)р-ра + m (2)р-ра = 150 г + 100 г = 250 г.

Внесем рассчитанные значения в таблицу, получим:

Вот теперь мы вплотную подобрались к расчету искомой величины ω (3)р.в. . В столбце, где она расположена, известно содержимое двух других ячеек, значит мы можем ее рассчитать:

ω (3)р.в. = 100% ∙ m (3)р.в. /m (3)р-ра = 100% ∙ 42,5 г/250 г = 17%

Пример 4

К 200 г 15%-ного раствора хлорида натрия добавили 50 мл воды. Какова массовая доля соли в полученном растворе. Ответ укажите с точностью до сотых _______%

Решение:

Прежде всего следует обратить внимание на то, что вместо массы добавленной воды, нам дан ее объем. Рассчитаем ее массу, зная, что плотность воды равна 1 г/мл:

m доб. (H 2 O) = V доб. (H 2 O) ∙ ρ (H 2 O) = 50 мл ∙ 1 г/мл = 50 г

Если рассматривать воду как 0%-ный раствор хлорида натрия, содержащий соответственно 0 г хлорида натрия, задачу можно решить с помощью такой же таблицы, как в примере выше. Начертим такую таблицу и вставим известные нам значения в нее:

В первом столбце известны два значения, значит можем посчитать третье:

m (1)р.в. = m (1)р-ра ∙ ω (1)р.в. /100% = 200 г ∙ 15%/100% = 30 г,

Во второй строчке тоже известны два значения, значит можем рассчитать третье:

m (3)р-ра = m (1)р-ра + m (2)р-ра = 200 г + 50 г = 250 г,

Внесем рассчитанные значения в соответствующие ячейки:

Теперь стали известны два значения в первой строке, значит можем посчитать значение m (3)р.в. в третьей ячейке:

m (3)р.в. = m (1)р.в. + m (2)р.в. = 30 г + 0 г = 30 г

ω (3)р.в. = 30/250 ∙ 100% = 12%.

Зная химическую формулу, можно вычислить массовую долю химических элементов в веществе. элемента в вещества обозначается греч. буквой «омега» - ω Э/В и рассчитывается по формуле:

где k - число атомов этого элемента в молекуле.

Какова массовая доля водорода и кислорода в воде (Н 2 О)?

Решение:

M r (Н 2 О) = 2*А r (Н) + 1*А r (О) = 2*1 + 1* 16 = 18

2) Вычисляем массовую долю водорода в воде:

3) Вычисляем массовую долю кислорода в воде. Так как в состав воды входят атомы только двух химических элементов, массовая доля кислорода будет равна:

Рис. 1. Оформление решения задачи 1

Рассчитайте массовую долю элементов в веществе H 3 PO 4 .

1) Вычисляем относительную молекулярную массу вещества:

M r (Н 3 РО 4) = 3*А r (Н) + 1*А r (Р) + 4*А r (О)= 3*1 + 1* 31 +4*16 = 98

2) Вычисляем массовую долю водорода в веществе:

3) Вычисляем массовую долю фосфора в веществе:

4) Вычисляем массовую долю кислорода в веществе:

1. Сборник задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. - М.: АСТ: Астрель, 2006.

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.34-36)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§15)

4. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

4. Видеоурок по теме «Массовая доля химического элемента в веществе» ().

Домашнее задание

1. с.78 № 2 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. с. 34-36 №№ 3,5 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.