Озон (химический элемент): свойства, формула, обозначение. Озон. Боевые свойства смертоносного оружия

19.10.2019

Кислород (О) стоит в 1 периоде, VI группе, в главной подгруппе. р-элемент. Электронная конфигурация 1s2 2s22p4 . Число электронов на внешнем уровне – 6. Кислород может принять 2 электрона и в редких случаях отдать. Валентность кислорода 2, степень окисления -2.

Физические свойства: кислород ( О2) – бесцветный газ, без запаха и вкуса; в воде малорастворим, немного тяжелее воздуха. При -183 °C и 101,325 Па кислород сжижается, приобретая голубоватый цвет. Строение молекулы: молекула кислорода двухатомна, в обычных условиях прочная, обладает магнитными свойствами. Связь в молекуле ковалентная неполярная. Кислород имеет аллотропную модификацию – озон (О3) – более сильный окислитель, чем кислород.

Химические свойства: до завершения энергетического уровня кислороду нужно 2 электрона, которые он принимает проявляя степень окисления -2, но в соединении со фтором кислород ОF2 -2 и О2F2 -1. Благодаря химической активности кислород взаимодействует почти со всеми простыми веществами. С металлами образует оксиды и пероксиды:

Кислород не реагирует только с платиной. При повышенных и высоких температурах реагирует со многими неметаллами:

Непосредственно кислород не взаимодействует с галогенами. Кислород реагирует со многими сложными веществами:

Кислороду характерны реакции горения:

В кислороде горят многие органические вещества:

При окислении кислородом уксусного альдегида получают уксусную кислоту:

Получение: в лаборатории: 1) электролизом водного раствора щелочи: при этом на катоде выделяется водород, а на аноде – кислород; 2) разложением бертолетовой соли при нагревании: 2КСlО3?2КСl + 3О2?; 3) очень чистый кислород получают: 2КМnO4?К2МnO4 + МnО2 + О2?.

Нахождение в природе: кислород составляет 47,2 % массы земной коры. В свободном состоянии он содержится в атмосферном воздухе – 21 %. Входит в состав многих природных минералов, огромное его количество содержится в организмах растений и животных. Природный кислород состоит из 3 изотопов: О(16), О(17), О(18).

Применение: используется в химической, металлургической промышленности, в медицине.

24. Озон и его свойства

В твердом состоянии у кислорода зафиксировано три модификации: ?-, ?– и?– модификации. Озон ( О3) – одна из аллотропных модификаций кислорода. Строение молекулы: озон имеет нелинейное строение молекулы с углом между атомами 117°. Молекула озона обладает некоторой полярностью (несмотря на атомы одного рода, образующих молекулу озона), диамагнитна, так как не имеет неспаренных электронов.

Физические свойства: озон – синий газ, имеющий характерный запах; молекулярная масса = 48, температура плавления (твердого) = 192,7 °C, температура кипения = 111,9 °C. Жидкий и твердый озон взрывчат, токсичен, хорошо растворим в воде: при 0 °C в 100 объемах воды растворяется до 49 объемов озона.

Химические свойства: озон – сильный окислитель, он окисляет все металлы, в том числе золото – Au и платину – Pt (и металлы платиновой группы). Озон воздействует на блестящую серебряную пластинку, которая мгновенно покрывается черным пероксидом серебра – Аg2О2; бумага, смоченная скипидаром, воспламеняется, сернистые соединения металлов окисляются до солей серной кислоты; многие красящие вещества обесцвечиваются; разрушает органические вещества – при этом молекула озона отщепляет один атом кислорода, и озон превращается в обыкновенный кислород. Атакже большинство неметаллов, переводит низшие оксиды в высшие, а сульфиды их металлов – в их сульфаты:

Йодид калия озон окисляет до молекулярного йода:

Но с пероксидом водорода Н2О2 озон выступает в качестве восстановителя:

В химическом отношении молекулы озона неустойчивы – озон способен самопроизвольно распадаться на молекулярный кислород:

Получение: получают озон в озонаторах путем пропускания через кислород или воздух электрические искры. Образование озона из кислорода:

Озон может образовываться при окислении влажного фосфора, смолистых веществ. Определитель озона: чтобы опознать в воздухе наличие озона, необходимо в воздух погрузить бумажку, пропитанную раствором йодида калия и крахмальным клейстером – если бумажка приобрела синюю окраску, значит, в воздухе присутствует озон. Нахождение в природе: в атмосфере озон образуется во время электрических разрядов. Применение: будучи сильным окислителем озон уничтожает различного рода бактерии, поэтому широко применяется в целях очищения воды и дезинфекции воздуха, используется как белящее средство.

Фраза «озоновый слой», ставшая известной в 70-е гг. прошлого века, давно уже набила оскомину. При этом мало кто действительно понимает, что означает это понятие и чем опасно разрушение озонового слоя. Еще большей загадкой для многих является строение молекулы озона, а ведь она напрямую связана с проблемами озонового слоя. Давайте узнаем больше об озоне, его строении и применении этого вещества в промышленности.

Что такое озон

Озон, или, как его еще называют, активный кислород, - это газ лазурного цвета с резким металлическим запахом.

Данное вещество может существовать во всех трех агрегатных состояниях: газообразном, твердом и жидком.

При этом в природе озон встречается только в виде газа, образуя так называемый озоновый слой. Именно из-за его лазурного цвета небо кажется голубым.

Как выглядит молекула озона

Свое прозвище «активный кислород» озон получил из-за своего сходства с кислородом. Так главным действующим химическим элементом в этих веществах является оксиген (О). Однако если в молекуле кислорода содержится 2 его атома, то молекула - О 3) состоит из 3 атомов этого элемента.

Благодаря такому строению, свойства озона подобны кислородным, однако более выражены. В частности, как и О 2 , О 3 является сильнейшим окислителем.

Самое главное отличие между этими «родственными» веществами, которое помнить жизненно важно для каждого, следующее: озоном нельзя дышать, он токсичен и при вдыхании способен повредить легкие или даже убить человека. При этом О 3 прекрасно подходит для очистки воздуха от токсичных примесей. Кстати, именно из-за этого после дождя так легко дышится: озон окисляет вредные вещества, содержащиеся в воздухе, и он очищается.

Модель молекулы озона (состоящая из 3 атомов оксигена) немного напоминает изображение угла, причем его размер - 117°. Эта молекула не имеет неспаренных электронов, поэтому является диамагнитной. Помимо этого, она обладает полярностью, хотя и состоит из атомов одного элемента.

Два атома данной молекулы прочно скреплены между собой. А вот связь с третьим менее надежна. По этой причине молекула озона (фото модели можно увидеть ниже) весьма непрочна и вскоре после образования распадается. Как правило, при любой реакции распада О 3 выделяется кислород.

Из-за нестабильности озона его не получается заготавливать и хранить, а также перевозить, как другие вещества. По этой причине его производство более затратно, чем других веществ.

При этом высокая активность молекул О 3 позволяет этому веществу быть сильнейшим окислителем, более мощным, чем кислород, и более безопасным, чем хлор.

Если молекула озона разрушается и выделяется О 2 , данная реакция всегда сопровождается выделением энергии. В то же время, чтобы произошел обратный процесс (образование О 3 из О 2), необходимо затратить ее не меньше.

В газообразном состоянии молекула озона распадается при температуре 70° С. Если ее повысить до 100 градусов и более, реакция значительно ускорится. Также ускоряет период распада молекул озона наличие примесей.

Свойства О3

В каком бы из трех состояний ни пребывал озон, он сохраняет синий цвет. Чем тверже вещество, тем насыщеннее и темнее этот оттенок.

Каждая молекула озона весит 48 г/моль. Она является более тяжелой, чем воздух, что помогает разделять эти вещества между собою.

О 3 способен окислять практически все металлы и неметаллы (кроме золота, иридия и платины).

Также это вещество может участвовать в реакции горения, однако для этого нужна более высокая температура, чем для О 2 .

Озон способен растворяться в Н 2 О и фреонах. В жидком состоянии он может смешиваться с жидким кислородом, азотом, метаном, аргоном, тетрахлоруглеродом и углекислотой.

Как образуется молекула озона

Молекулы О 3 образуются с помощью прикрепления к молекулам кислорода свободных атомов оксигена. Они, в свою очередь, появляются благодаря расщеплению других молекул О 2 из-за воздействия на них электрических разрядов, ультрафиолетовых лучей, быстрых электронов и других частиц высокой энергии. По этой причине специфический запах озона можно почувствовать возле искрящих электрических приборов или ламп, излучающих ультрафиолет.

В промышленных масштабах О 3 выделяют с помощью электрических или озонаторов. В этих приборах электрический ток высокого напряжения пропускается через газовый поток, в котором находится О 2 , атомы которого и служат «строительным материалом» для озона.

Иногда в эти аппараты запускают чистый кислород или обычный воздух. От чистоты исходного продукта зависит качество получаемого озона. Так, медицинский О 3 , предназначенный для обработки ран, добывают только из химически чистого О 2 .

История открытия озона

Разобравшись с тем, как выглядит молекула озона и как она образуется, стоит познакомиться с историей этого вещества.

Впервые оно было синтезировано нидерландским исследователем Мартином Ван Марумом во второй половине XVIII в. Ученый заметил, что после пропускания электрических искр через емкость с воздухом газ в ней менял свои свойства. При этом Ван Марум так и не понял, что выделил молекулы нового вещества.

А вот его немецкий коллега по фамилии Шейнбейн, пытаясь с помощью электричества разложить Н 2 О на Н и О 2 , обратил внимание на выделение нового газа с едким запахом. Проведя массу исследований, ученый описал открытое им вещество и дал ему имя «озон» в честь греческого слова «пахнуть».

Способность убивать грибки и бактерии, а также понижать токсичность вредных соединений, которой обладало открытое вещество, заинтересовала многих ученых. Через 17 лет после официального открытия О 3 Вернером фон Сименсом был сконструирован первый аппарат, позволяющий синтезировать озон в любом количестве. А еще через 39 лет гениальный Никола Тесла изобрел и запатентовал первый в мире генератор озона.

Именно этот аппарат уже через 2 года впервые был использован во Франции на очистительных сооружениях для питьевой воды. С началом XX в. Европа начинает переходить на озонирование питьевой воды для ее очистки.

Российская империя впервые использовала эту методику в 1911 г., а через 5 лет в стране было оборудовано почти 4 десятка установок для очистки питьевой воды с помощью озона.

Сегодня озонирование воды постепенно вытесняет хлорирование. Так, 95% всей питьевой воды в Европе очищается с помощью О 3 . Также весьма популярна данная методика и в США. В СНГ она пока еще на стадии изучения, поскольку, хотя данная процедура и более безопасна и удобна, обходится она дороже, чем хлорирование.

Сферы применения озона

Помимо очистки воды, О 3 имеет ряд других сфер применения.

  • Озон используется в качестве отбеливателя при производстве бумаги и ткани.
  • Активный кислород применяется для дезинфекции вин, а также для ускорения процесса «старения» коньяков.
  • С помощью О 3 рафинируются различные растительные масла.
  • Очень часто это вещество применяют для обработки скоропортящихся продуктов, вроде мяса, яиц, фруктов и овощей. При этой процедуре не остается химических следов, как при использовании хлора или формальдегидов, а продукты могут храниться значительно дольше.
  • Озоном стерилизуют медицинское оборудование и одежду.
  • Также очищенный О 3 применяют для различных медицинских и косметических процедур. В частности, с его помощью в стоматологии дезинфицируют ротовую полость и десны, а также лечат различные заболевания (стоматит, герпес, оральный кандидоз). В европейских странах О 3 весьма популярен для дезинфекции ран.
  • В последние годы огромную популярность приобретают портативные домашние приборы для фильтрации воздуха и воды с помощью озона.

Озоновый слой - что это?

На расстоянии 15-35 км над поверхностью Земли находится озоновый слой, или, как его еще называют, озоносфера. В этом месте концентрированный О 3 служит своеобразным фильтром для вредного солнечного излучения.

Откуда берется такое количество вещества, если его молекулы нестабильны? Ответить на этот вопрос не сложно, если вспомнить модель молекулы озона и способ ее образования. Итак, кислород, состоящий из 2 молекул оксигена, попадая в стратосферу, нагревается там солнечными лучами. Этой энергии оказывается достаточно, чтобы расщепить О 2 на атомы, из которых образуется О 3 . При этом озоновый слой не только использует часть солнечной энергии, но и фильтрует ее, поглощает опасный ультрафиолет.

Выше было сказано, что озон растворяется фреонами. Эти газообразные вещества (применяются при изготовлении дезодорантов, огнетушителей и холодильников), попав в атмосферу, влияют на озон и способствуют его разложению. Вследствие этого в озоносфере возникают дыры, сквозь которые на планету попадают нефильтрированые солнечные лучи, которые разрушительно действуют на живые организмы.

Рассмотрев особенности и строение молекул озона, можно прийти к выводу, что это вещество, хотя и опасно, но весьма полезно для человечества, если его правильно использовать.

Ниже мы еще остановимся на получении кислорода из воздуха, а пока зайдем в помещение, где работают электродвигатели и в котором мы умышленно выключили вентиляцию.

Сами по себе эти двигатели не могут служить источником загрязнения воздуха, так как они ничего из воздуха не потребляют и ничего в воздух не отдают. Однако при дыхании здесь чувствуется некоторое раздражение в горле. Что произошло с воздухом, который был чист до пуска двигателей?

В этом помещении работают так называемые коллекторные моторы. На подвижных контактах мотора - ламелях - часто образуется искра. В искре при высокой температуре молекулы кислорода соединяются между собой, образуя озон (O 3).

Молекула кислорода состоит из 2 атомов, которые всегда проявляют две валентности (0 = 0).

Как же представить себе строение молекулы озона? Валентность кислорода измениться не может: атомы кислорода в озоне должны также иметь двойную связь. Поэтому молекулу озона обычно изображают в виде треугольника, в углах которого расположены 3 атома кислорода.

Озон - газ голубоватого цвета с резким специфическим запахом. Образование озона из кислорода происходит с большим поглощением тепла.

Слово «озон» взято из греческого «аллос» - другой и «тропос» - поворот и означает образование простых веществ из одного и того же элемента.

Озон является аллотропическим видоизменением кислорода. Это простое вещество. Его молекула состоит из 3 атомов кислорода. В технике озон получают в специальных приборах, называемых озонаторами.

В этих приборах кислород пропускают через трубку, в которой помещен электрод, подключенный к источнику тока высокого напряжения. Вторым электродом служит проволока, намотанная на наружной части трубки. Между электродами создается электрический разряд, в котором из кислорода образуется озон. Кислород, выходящий из озонатора, содержит около 15 процентов озона.

Озон образуется также при действии на кислород лучей радиоактивного элемента радия или сильного потока ультрафиолетовых лучей. Кварцевые лампы, которые широко применяются в медицине, излучают ультрафиолетовые лучи. Вот почему в помещении, где долго работала кварцевая лампа, воздух становится удушающим.

Можно получить озон и химическим путем - действием концентрированной серной кислоты на марганцевокислый калий или окислением влажного фосфора.

Молекулы озона очень неустойчивы и легко распадаются с образованием молекулярного и атомарного кислорода (О 3 = O 2 + O). Так как атомарный кислород чрезвычайно легко окисляет различные соединения, озон является сильным окислителем. При комнатной температуре он легко окисляет ртуть и серебро, которые в атмосфере кислорода достаточно устойчивы.

Под действием озона органические красители обесцвечиваются, а каучуковые изделия разрушаются, теряют эластичность и трескаются при легком сжатии.

Такие горючие вещества, как эфир, спирт, светильный газ, воспламеняются при соприкосновении с сильно озонированным воздухом. Вата, через которую пропускают озонированный воздух, также воспламеняется.

Сильные окислительные свойства озона применяются для обеззараживания воздуха и воды. Озонированный воздух, пропущенный через воду, уничтожает в ней болезнетворные бактерии и несколько улучшает ее вкус и цвет.

Озонирование воздуха с целью уничтожения вредоносных бактерий не находит широкого применения, так как для эффективной очистки воздуха необходима значительная концентрация озона, а в большой концентрации он вреден для здоровья человека - вызывает сильное удушье.

В малых концентрациях озон даже приятен. Так бывает, например, после грозы, когда в огромной электрической искре блеснувшей молнии из кислорода воздуха образуется озон, который постепенно распределяется в атмосфере, вызывая легкое, приятное ощущение при дыхании. То же мы испытываем в лесу, особенно в густом сосновом бору, где под воздействием кислорода происходит окисление различных органических смол с выделением озона. Скипидар, который входит в состав смолы хвойного дерева, окисляется особенно легко. Вот почему в хвойных лесах воздух всегда содержит некоторое количество озона.

У здорового человека воздух соснового бора вызывает приятное ощущение. А для человека с больными легкими этот воздух полезен и необходим для лечения. Советское государство использует богатые сосновые леса в различных районах нашей родины и создает там лечебные санатории.

Озон - газообразное вещество, являющееся видоизменением кислорода (состоит из трех атомов его). Он всегда присутствует в атмосфере, но впервые был обнаружен в 1785 г. во время изучения действия искры на воздух голландским физиком Ван Марумом. В 1840 г. немецкий химик Кристиан Фридрих Шенбейн подтвердил эти наблюдения и предложил, что им открыт новый элемент, которому он дал название «озон» (от греческого ozon - пахнущий). В 1850 г. была определена высокая активность озона как окислителя и способность его присоединяться к двойным связям в реакциях со многими органическими соединениями. Оба эти свойства озона в дальнейшем нашли широкое практическое применение. Однако значение озона не ограничивается только этими двумя свойствами. Было установлено, что он обладает рядом ценных свойств как дезинфектанта и дезодоранта.
Впервые озон стали использовать в санитарии как средство для обеззараживания питьевой воды и воздуха. В числе первых исследователей процессов озонирования были и русские ученые. Еще в 1874 г. создатель перво" школы (русской) гигиенистов профессор А. Д. Доброе ш вин предложил озон как лучшее средство для обеззараживания питьевой воды и воздуха от патогенной микро флоры. Дозднее, в 1886 г. Н. К. Келдыш провел исследования бактерицидного действия озона и рекомендовали его как высокоэффективное дезинфицирующее средство. Особенно широко развернулись исследования озона в XX в. И уже в 1911 г. в.Петербурге была пущена в эксплуатацию первая в Европе озоноводопроводная станция. В этот же период были проведены многочисленные исследования озонирования с лечебной целью в медицине, с санитарной целью в пищевой промышленности, в окислительных процессах химической промышленности и др.
Сферы и масштабы использования озона в последнее десятилетие увеличиваются быстрыми темпами. В настоящее время наиболее важные области применения озона следующие: очистка и обеззараживание питьевой и промышленной воды, а также хозяйственно-фекальных и промышленных стоков с целью снижения биологического потребления кислорода (БПК), обесцвечивание, нейтрализация вредных ядовитых веществ (цианидов, фенолов, меркаптанов), устранение неприятных запахов, дезодорация и очистка воздуха различных производств, озонирование в системах кондиционирования воздуха, хранение пищевых продуктов, стерилизация упаковочных и перевязочных материалов в фармацевтической промышленности, терапия и медицинская профилактика различных заболеваний и др.
В последние годы установлено еще одно свойство озона - способность повышать биологическую ценность кормов для животных и продуктов питания для человека, что позволило применять озон в процессах переработки, подготовки и хранения кормов и различных продуктов. Поэтому разработка технологий озонирования в сельскохозяйственном производстве, и, в частности в птицеводстве, весьма перспективна

Физические свойства озона

Озон - это высокоактивная, аллотропная форма кислорода; при обычных температурах - это газ светло-голубого цвета с характерным острым запахом (запах органолептически ощущается при концентрации озона 0,015 мг/м3 воздуха). В жидкой фазе озон имеет индиго-голубой, а в твердой - густой фиолетово-голубоватый цвет, слой озона толщиной в 1 мм практически светонепроницаем. Озон образуется из кислорода, поглощая при этом тепло и, наоборот, при разложении переходит в кислород, выделяя тепло (подобно горению). Процесс этот можно записать в следующем виде:
Экзотермическая реакция
2Оз=ЗО2+68 ккал
Эндотермическая реакция

Скорости этих реакций зависят от температуры, давления и концентрации озона. При нормальной температуре и давлении реакции протекают медленно, но при повышенных температурах ускоряется распад озона.
Образование озона под действием энергии различных излучений довольно сложно. Первичные процессы образования озона из кислорода могут протекать по-разному в зависимости от количества приложенной энергии.
Возбуждение молекулы кислорода происходит при энергии электронов 6,1 эВ; образование молекулярных ионов кислорода - при энергии электронов 12,2 эВ; диссоциация в кислороде - при энергии электронов 19,2 эВ. Все свободные электроны захватываются молекулами кислорода, в результате чего образуются отрицательные ионы кислорода. После возбуждения молекулы наступает реакция образования озона.
При энергии электронов 12,2 эВ, когда происходит образование молекулярных ионов кислорода, выхода озона не наблюдается, а при энергии электронов 19,2 эВ, когда участвуют как атом, так и ион кислорода, образуется озон. Наряду с этим образуются положительные и отрицательные ионы кислорода. Механизм распада озона*, в котором участвуют гомогенные и гетерогенные системы, сложен и зависит от условий. Разложение озона ускоряется в гомогенных системах газообразными добавками (окислы азота, хлор и др.), а в гетерогенных системах металлами (ртуть, серебро, медь и др.) и окислами металлов (железо, медь, никель, свинец и др.). При высоких концентрациях озона реакция происходит со взрывом. При концентрации озона до 10% взрывного разложения его не происходит. Низкие температуры способствуют сохранению озона. При температурах около - 183°С жидкий озон можно хранить длительное время без заметного разложения. Быстрое нагревание до точки кипения (-119°С) или быстрое охлаждение озона могут привести к взрыву. Поэтому знание свойств озона и соблюдение мер предосторожности очень важно при работе с ним. В таблице 1 приведены основные физические свойства озона.
При газообразном состоянии озон диамагнитен, а в жидком - слабо парамагнитен. Озон хорошо растворяется в эфирных маслах, скипидаре, четыреххлористом углероде. Растворимость его в воде выше, чем кислорода, более чем в 15 раз.
Молекула озона, как уже отмечалось, состоит из трех атомов кислорода и имеет несимметричную структуру треугольника, характеризующегося тупым углом при вершине (116,5°) и равными ядерными расстояниями (1,28°А) со средней энергией связи (78 ккал/моль) и слабовыражен-ной полярностью (0,58).

Основные физические свойства озона

Показатель Значение
Молекулярный вес 47,998
Удельный вес по воздуху 1,624
Плотность при НТД 2,1415 г/л
Объем при НТД 506 см3/г
Температура плавления - 192,5° С
Температура кипения -111,9°С
Критическая температура - 12,1° С
Критическое давление 54,6 атм
Критический объем 147,1 см3/моль
Вязкость при НТД 127- КГ* пауз
Теплота образования (18° С) 34,2 ккал/моль
Теплота испарения (-112° С) 74,6 ккал/моль
Теплота растворения (НгО, 18° С) 3,9 ккал/моль
Потенциал ионизации 12,8 эВ
Сродство к электрону 1,9-2,7 эВ
Диэлектрическая постоянная
Газообразного озона при НТД
1,0019
Теплопроводность (25° С) 3,3- 10~"5 кал/с- см2
Скорость детонации (25° С) 1863 м/с
Давление детонации (25° С) 30 атм
Магнитная восприимчивость
(18° С) 0,002- Ю-6 ед
Молекулярные коэффициенты
.кстинции (25° С) 3360 см""1 моль (при 252 нмУФЛ); 1,32см-1
(при 605 нм видимого света)
Растворимость в воде при ("С):
0 1,13 г/л
10 0,875 г/л
20 0,688 г/л
40 0,450 г/л
СО 0,307 г/л
Растворимость озона:
в уксусной кислоте (18,2° С) 2,5 г/л
в трихлоруксусной кислоте, 0"С) 1,69 г/л
, ангидриде уксусной кислоты (0°С) 2,15 г/л
в пропионовой кислоте (17,3° С) 3,6 г/л
в ангидриде пропионовой кислоты (18,2° С) 2,8 г/л
в четыреххлористом углероде (21° С) 2,95 г/л

Оптические свойства озона характеризуются его нестойкостью к излучениям различного спектрального состава. Излучения могут не только поглощаться озоном, разрушая его, но и образовывать озон. Образование озона в атмосфере происходит под воздействием ультрафиолетового излучения солнца в коротковолновом участке спектра 210-220 и 175 нм. При этом на поглощенный квант света образуются две молекулы озона. Спектральные свойства озона, его образование и распад под влиянием солнечной радиации обеспечивают оптимальные параметры климата в биосфере Земли.



гольника, характеризующегося тупым углом при вершине (116,5°) и равными ядерными расстояниями (1,28°А) со средней энергией связи (78 ккал/моль) и слабовыражен-ной полярностью (0,58).
Оптические свойства озона характеризуются его нестойкостью к излучениям различного спектрального состава. Излучения могут не только поглощаться озоном, разрушая его, но и образовывать озон. Образование озона в атмосфере происходит под воздействием ультрафиолетового излучения солнца в коротковолновом участке спектра 210-220 и 175 нм. При этом на поглощенный квант света образуются две молекулы озона. Спектральные свойства озона, его образование и распад под влиянием солнечной радиации обеспечивают оптимальные параметры климата в биосфере Земли.
Озон обладает хорошей способностью адсорбироваться силикагелем и алюмогелем, что позволяет использовать это явление для извлечения озона из газовых смесей и из растворов, а также для безопасного обращения с ним при высоких концентрациях. В последнее время для безопасной работы с высокими концентрациями озона широко используют фреоны. Концентрированный озон, растворенный во фреоне, может сохраняться длительное время.
При синтезе озона, как правило, образуются газовые смеси (O3+O2 или Оз + воздух), в которых содержание озона не превышает 2-5% по объему. Получение чистого озона - технически сложная задача и до настоящего времени еще нерешенная. Существует способ отделения кислорода от смесей путем низкотемпературной ректификации газовых смесей. Однако пока еще не удалось исключить опасность взрыва озона при ректификации. В исследовательской практике часто используют прием двойного намораживания озона жидким азотом, позволяющий получить концентрированный озон. Более безопасным является метод получения концентрированного озона путем адсорбции - десорбции, когда поток газовой смеси продувают через слой охлажденного (-80°С) силикагеля, а затем адсорбент продувают инертным газом (азотом или гелием). Таким методом можно получить соотношение озон: кислород =9:1, т. е. высококонцентрированный озон.
Использование в промышленных целях концентрированного озона как окислительного компонента незначительно.

Химические свойства озона

Характерными химическими свойствами озона в первую очередь следует считать его нестойкость, способность быстро разлагаться, и высокую окислительную активность.
Для озона установлено окислительное число И, которое характеризует число атомов кислорода, отдаваемых озоном окисляемому веществу. Как показали опыты, оно может быть равным 0,1, 3. В первом случае озон разлагается с увеличением объема: 2Оз--->ЗО2, во втором он отдает окисляемому веществу один атом кислорода: О3 ->О2+О (при этом, объем не увеличивается), и в третьем случае происходит присоединение озона к окисляемому веществу: О3->ЗО (при этом объем его уменьшается) .
Окислительными свойствами характеризуются химические реакции озона с неорганическими веществами.
Озон окисляет все металлы, за исключением золота и группы платины. Сернистые соединения окисляются им до сернокислых, нитриты - в нитраты. В реакциях с соединениями йода и брома озон проявляет восстановительные свойства, и на этом основан ряд методов его количественного определения. В реакцию с озоном вступают азот, углерод и их окислы. В реакции озона с водородом образуются гидроксильные радикалы: Н+О3-> HO+O2. Окислы азота реагируют с озоном быстро, образуя высшие окислы:
NO+Оз->NO2+O2;
NO2+O3----->NO3+O2;
NO2+O3->N2O5.
Аммиак окисляется озоном в азотнокислый аммоний.
Озон разлагает галогеноводороды и переводит низшие окислы в высшие. Галогены, участвующие в качестве активаторов процесса, также образуют высшие окислы.
Восстановительный потенциал озон - кислород достаточно высокий и в кислой среде определен величиной 2,07 В, а в щелочном растворе - 1,24 В. Сродство озона с электроном определено величиной в 2 эВ, и только фтор, его окислы и свободные радикалы обладают более сильным сродством к электрону.
Высокое окислительное действие озона было использовано для перевода ряда трансурановых элементов в семивалентное состояние, хотя высшее валентное состояние их равно 6. Реакция озона с металлами переменной валентности (Сг, Сог и др.) находит практическое применение при получении исходного сырья в производстве красителей и витамина PP.
Щелочные и щелочно-земельные металлы под действием озона окисляются, а их гидроокиси образуют озониды (триоксиды). Известны озониды давно, о них упоминал еще в 1886 г. французский химик-органик Шарль Адольф Вюрц. Они представляют собой кристаллическое вещество красно-коричневого цвета, в решетку молекул которого входят однократно отрицательные ионы озона (O3-), чем и обусловлены их парамагнитные свойства. Предел термической устойчивости озонидов -60±2° С, содержание активного кислорода - 46% по весу. Как многие пе-рекисные соединения озониды щелочных металлов нашли широкое применение в регенеративных процессах.
Озониды образуются в реакциях озона с натрием, калием, рубидием, цезием, которые идут через промежуточный неустойчивый комплекс типа М+ О- Н+ O3--с дальнейшей реакцией с озоном, в результате чего образуется смесь озонида и водного гидрата окиси щелочного металла.
Озон активно вступает в химическое взаимодействие со многими органическими соединениями. Так, первичным продуктом взаимодействия озона с двойной связью непредельных соединений является малозоид, который нестоек и распадается на биполярный ион и карбонильные соединения (альдегид или кетон). Промежуточные продукты, которые образуются в этой реакции, вновь соединяются в другой последовательности, образуя озо-нид. В присутствии веществ, способных вступать в реакцию с биполярным ионом (спирты, кислоты), вместо озонидов образуются различные перекисные соединения.
Озон активно вступает в реакцию с ароматическими соединениями, при этом реакция идет как с разрушением ароматического ядра, так и без его разрушения.
В реакциях с насыщенными углеводородами озон вначале распадается с образованием атомарного кислорода, который инициирует цепное окисление, при этом выход продуктов окисления соответствует расходу озона. Взаимодействие озона с насыщенными углеводородами протекает как в газовой фазе, так и в растворах.
С озоном легко реагируют фенолы, при этом происходит разрушение последних до соединений с нарушенным ароматическим ядром (типа хиноина), а также малотоксичных производных непредельных альдегидов и кислот.
Взаимодействие озона с органическими соединениями находит широкое применение в химической промышленности и в смежных отраслях. Использование реакции озона с непредельными соединениями позволяет получать искусственным путем различные жирные кислоты, аминокислоты, гормоны, витамины и полимерные материалы; реакции озона с ароматическими углеводородами - дифениловую кислоту, фталевый диальдегид и фталевую кислоту, глиоксалевую кислоту и др.
Реакции озона с ароматическими углеводородами легли в основу разработки методов дезодорации различных сред, помещений, сточных вод, абгазов, а с серосодержащими соединениями - в основу разработки методов очистки сточных вод и отходящих газов различных производств, включая сельское хозяйство, от серосодержащих вредных соединений (сероводород, меркаптаны, сернистый ангидрид).

Озон - слово греческого происхождения, которое в переводе означает “пахучий”. Что такое озон? По своей сути, озон О3 - это газ голубого цвета с характерным запахом, который ассоциируется с запахом воздуха после грозового дождя. Особенно ощущается вблизи источников электрического тока.

История обнаружения озона учеными

Что такое озон? Как он был открыт? В 1785 физиком из Голландии Мартином ван Марумом было проведено несколько экспериментов, направленных на исследование воздействия электрического тока на кислород. По их результатам ученый исследовал появление специфической "электрической материи". Продолжая работать в данном направлении, в 1850 году ему удалось определить способность озона взаимодействовать с органическими соединениями и его свойство в качестве окислителя.

Впервые дезинфицирующие свойства озона были применены в 1898 году на территории Франции. В городке Бон Вояж был построен завод, который осуществлял обеззараживание и дезинфекцию воды из реки Вазюби. В России первый завод по озонированию был запущен в Санкт-Петербурге в 1911 году.

Широкое применение озон получил в годы Первой мировой войны в качестве антисептического средства. Озонокислородная смесь применялась для лечения заболеваний кишечника, пневмонии, гепатита и практиковалась при инфекционных поражениях после хирургического вмешательства. Особенно активно озонированием начали заниматься с 1980 года, толчком к этому стало появление на рынке надежных и энергосберегающих В настоящее время с помощью озона очищают около 95% воды в США и по всей Европе.

Технология образования озона

Что такое озон? Как он образуется? В естественной среде озон находится в атмосфере Земли на высоте 25 км. По сути, это газ, который образуется в результате ультрафиолетового излучения Солнца. На поверхности он образует слой толщиной 19-35 км, который защищает Землю от проникновения солнечной радиации. Согласно трактовке химиков, озон - это активный кислород (соединение трех атомов кислорода). В газообразном состоянии он голубой, в жидком имеет оттенок индиго, а в твердом - это темно-синие кристаллы. О3 - это его молекулярная формула.

Каков вред озона? Он относится к самому высокому классу опасности - это очень ядовитый газ, токсичность которого приравнивается к категории боевых отравляющих веществ. Причиной его появления являются электрические разряды в атмосфере (3O2 = 2O3). В природе почувствовать его можно после сильных вспышек молний. Озон хорошо взаимодействует с другими соединениями и считается одним из Поэтому его используют для уничтожения бактерий, вирусов, микроорганизмов, для очистки воды и воздуха.

Негативное влияние озона

На что влияет озон? Характерной особенностью этого газа является способность быстро взаимодействовать с другими веществами. Если в природе наблюдается превышение нормативных показателей, то в результате его взаимодействия с тканями человека могут возникнуть опасные вещества и заболевания. Озон - сильнодействующий окислитель, при взаимодействии с которым быстро разрушаются:

  • натуральная резина;
  • металлы, за исключением золота, платины и иридия;
  • бытовые приборы;
  • электроника.

При больших концентрациях озона в воздухе происходит ухудшение здоровья и самочувствия человека, в частности:

  • раздражается слизистая оболочка глаз;
  • нарушается функционирование органов дыхания, которое приведет к параличу легких;
  • наблюдается общая усталость организма;
  • появляются головные боли;
  • возможно появление аллергических реакций;
  • жжение в горле и тошнота;
  • происходит негативное влияние на нервную систему.

Полезные свойства озона

Очищает ли озон воздух? Да, несмотря на свою газ является очень полезным для человека. В небольших концентрациях он отмечается отличными дезинфицирующими и дезодорирующими свойствами. В частности, он губительно действует на вредные микроорганизмы и производит к уничтожению:

  • вирусов;
  • различных видов микробов;
  • бактерий;
  • грибков;
  • микроорганизмов.

Чаще всего озон используют во время эпидемии гриппа и вспышек опасных инфекционных заболеваний. С его помощью очищают воду от разного рода примесей и соединений железа, при этом обогащают ее кислородом и минералами.

Интересная информация об озоне, сфера его применения

Отличные дезинфицирующие свойства и отсутствие побочных эффектов привели к появлению спроса на озон и его широкому применению в различных отраслях экономики. В наши дни озон успешно используется для:

  • удовлетворения потребностей фармацевтической отрасли;
  • очистки воды в аквариумах и рыбных хозяйствах;
  • дезинфекции бассейнов;
  • медицинских целей;
  • косметических процедур.

В медицинской отрасли озонирование практикуется при язвах, ожогах, экземах, варикозе, ранах и дерматологических заболеваниях. В косметологии озон применяют для борьбы со старением кожи, целлюлитом и лишним весом.

Влияние озона на жизнедеятельность живых существ

Что такое озон? Как он влияет на жизнь на Земле? Согласно исследованиям ученых, 10% озона находится в тропосфере. Этот озон является составным компонентом смогов и выполняет роль загрязнителя. Он негативно сказывается на дыхательных органах людей, животных и замедляет рост растений. Однако его количество очень мало, чтобы существенно вредить здоровью. Значительная часть вредного озона в составе смогов - это продукты функционирования автомобилей и электростанций.

Значительно больше озона (около 90%) находится в стратосфере. Этот поглощает биологически вредное ультрафиолетовое излучение Солнца, тем самым защищая людей, флору и фауну от негативных последствий.