Расчет радиатора для транзистора онлайн калькулятор. Как рассчитать радиатор. Схема, описание. Как рассчитать нужное количество секций радиатора отопления

25.08.2019

В физике, электротехнике и атомной термодинамике есть известный закон - ток, протекающий по проводам, нагревает их. Придумали его Джоуль и Ленц, и оказались правы - так оно и есть. Всё, что работает от электричества, так или иначе часть проходящей энергии передаёт в тепло.

Так уж получилось в электронике, что самым страдающим от тепла объектом нашей окружающей среды является воздух. Именно воздуху нагревающиеся детали передают тепло, а от воздуха требуется принять тепло и куда-нибудь подевать. Потерять, к примеру, или рассеять по себе. Процесс отдачи тепла мы с вами назовем охлаждением.

Наши электронные конструкции тоже рассеивают немало тепла, одни - больше, другие - меньше. Греются стабилизаторы напряжения, греются усилители, греется транзистор, управляющий релюшкой или даже просто мелким светодиодом, разве что греется ну совсем немного. Ладно, если греется немного. Ну а если он жарится так, что руку держать нельзя? Давайте пожалеем его и попробуем как-нибудь ему помочь. Так сказать, облегчить его страдания.

Вспомним устройство батареи отопления. Да, да, та самая обычная батарея, что греет комнату зимой и на которой мы сушим носки и футболки. Чем больше батарея, тем больше тепла будет в комнате, так ведь? По батарее протекает горячая вода, она нагревает батарею. У батареи есть важная вещь - количество секций. Секции контактируют с воздухом, передают ему тепло. Так вот, чем больше секций, то есть чем больше занимаемая площадь батареи, тем больше тепла она может нам отдать. Приварив еще парочку секций, мы сможем сделать теплее нашу комнату. Правда, при этом горячая вода в батарее может остыть, и соседям ничего не останется.

Рассмотрим устройство транзистора.

На медном основании (фланце) 1 на подложке 2 закреплен кристалл 3 . Он подключается к выводам 4 . Вся конструкция залита пластмассовым компаундом 5 . У фланца есть отверстие 6 для установки на радиатор.

Вот это по сути та же самая батарея, посмотрите! Кристалл греется, это как горячая вода. Медный фланец контактирует с воздухом, это секции батареи. Площадь контакта фланца и воздуха - это место нагревания воздуха. Нагревающийся воздух охлаждает кристалл.

Как сделать кристалл холоднее? Устройство транзистора мы изменить не можем, это понятно. Создатели транзистора об этом тоже подумали и для нас, мучеников, оставили единственную дорожку к кристаллу - фланец. Фланец - это как одна-единственная секция у батареи - жарить жарит, а тепла воздуху не передается - маленькая площадь контакта. Вот тут предоставляется простор нашим действиям! Мы можем нарастить фланец, припаять к нему еще "парочку секций", то бишь большую медную пластинку, благо фланец сам медный, или же закрепить фланец на металлической болванке, называемой радиатором. Благо отверстие во фланце приготовлено под болт с гайкой.

Что же такое радиатор? Я твержу уже третий абзац про него, а толком так ничего и не рассказал! Ладно, смотрим:

Как видим, конструкция радиаторов может быть различной, это и пластинки, и ребра, а еще бывают игольчатые радиаторы и разные другие, достаточно зайти в магазин радиодеталей и пробежаться по полке с радиаторами. Радиаторы чаще всего делают из алюминия и его сплавов (силумин и другие). Медные радиаторы лучше, но дороже. Стальные и железные радиаторы применяются только на очень небольшой мощности, 1-5Вт, так как они медленно рассеивают тепло.

Тепло, выделяемое в кристалле, определяется по очень простой формуле P=U*I , где P - выделяемая в кристалле мощность, Вт, U = напряжение на кристалле, В, I - сила тока через кристалл, А. Это тепло проходит через подложку на фланец, где передается радиатору. Далее нагретый радиатор контактирует с воздухом и тепло передается ему, как следующему участнику нашей системы охлаждения.

Посмотрим на полную схему охлаждения транзистора.

У нас появились две штуки - это радиатор 8 и прокладка между радиатором и транзистором 7 . Её может и не быть, что и плохо, и хорошо одновременно. Давайте разбираться.

Расскажу о двух важных параметрах - это тепловые сопротивления между кристаллом (или переходом, как его еще называют) и корпусом транзистора - Rпк и между корпусом транзистора и радиатором - Rкр. Первый параметр показывает, насколько хорошо тепло передается от кристалла к фланцу транзистора. Для примера, Rпк, равное 1,5градуса Цельсия на ватт, объясняет, что с увеличением мощности на 1Вт разница температур между фланцем и радиатором будет 1,5градуса. Иными словами, фланец всегда будет холоднее кристалла, а насколько - показывает этот параметр. Чем он меньше, тем лучше тепло передается фланцу. Если мы рассеиваем 10Вт мощности, то фланец будет холоднее кристалла на 1,5*10=15градусов, а если же 100Вт - то на все 150! А поскольку максимальная температура кристалла ограничена (не может же он жариться до белого каления!), фланец надо охлаждать. На эти же 150 градусов.

К примеру:
Транзистор рассеивает 25Вт мощности. Его Rпк равно 1,3градуса на ватт. Максимальная температура кристалла 140градусов. Значит, между фланцем и кристаллом будет разница в 1,3*25=32,5градуса. А поскольку кристалл недопустимо нагревать выше 140градусов, от нас требуется поддерживать температуру фланца не горячее, чем 140-32,5=107,5градусов. Вот так.
А параметр Rкр показывает то же самое, только потери получаются на той самой пресловутой прокладке 7. У нее значение Rкр может быть намного больше, чем Rпк, поэтому, если мы конструируем мощный агрегат, нежелательно ставить транзисторы на прокладки. Но всё же иногда приходится. Единственная причина использовать прокладку - если нужно изолировать радиатор от транзистора, ведь фланец электрически соединен со средним выводом корпуса транзистора.

Вот давайте рассмотрим еще один пример.
Транзистор жарится на 100Вт. Как обычно, температура кристалла - не более 150градусов. Rпк у него 1градус на ватт, да еще и на прокладке стоит, у которой Rкр 2 градуса на ватт. Разница температур между кристаллом и радиатором будет 100*(1+2)=300градусов. Радиатор нужно держать не горячее, чем 150-300 = минус 150 градусов: Да, дорогие мои, это тот самый случай, который спасет только жидкий азот: ужос!

Намного легче живется на радиаторе транзисторам и микросхемам без прокладок. Если их нет, а фланцы чистенькие и гладкие, и радиатор сверкает блеском, да еще и положена теплопроводящая паста, то параметр Rкр настолько мал, что его просто не учитывают.

Охлаждение бывает двух типов - конвекционное и принудительное. Конвекция, если помним школьную физику, это самостоятельное распространение тепла. Так же и конвекционное охлаждение - мы установили радиатор, а он сам там как-нибудь с воздухом разберется. Радиаторы конвекционного типа устанавливаются чаще всего снаружи приборов, как в усилителях, видели? По бокам две металлические пластинчатые штуковины. Изнутри к ним привинчиваются транзисторы. Такие радиаторы нельзя накрывать, закрывать доступ воздуха, иначе радиатору некуда будет девать тепло, он перегреется сам и откажется принимать тепло у транзистора, который долго думать не будет, перегреется тоже и: сами понимаете что будет. Принудительное охлаждение - это когда мы заставляем воздух активнее обдувать радиатор, пробираться по его ребрам, иглам и отверстиям. Тут мы используем вентиляторы, различные каналы воздушного охлаждения и другие способы. Да, кстати, вместо воздуха запросто может быть и вода, и масло, и даже жидкий азот. Мощные генераторные радиолампы частенько охлаждаются проточной водой.

Как распознать радиатор - для конвекционного он или принудительного охлаждения? От этого зависит его эффективность, то есть насколько быстро он сможет остудить горячий кристалл, какой поток тепловой мощности он сможет через себя пропустить.

Смотрим фотографии.

Первый радиатор - для конвекционного охлаждения. Большое расстояние между ребрами обеспечивает свободный поток воздуха и хорошую теплоотдачу. На второй радиатор сверху одевается вентилятор и продувает воздух сквозь ребра. Это принудительное охлаждение. Разумеется, использовать везде можно и те, и те радиаторы, но весь вопрос - в их эффективности.
У радиаторов есть 2 параметра - это его площадь (в квадратных сантиметрах) и коэффициент теплового сопротивления радиатор-среда Rрс (в Ваттах на градус Цельсия). Площадь считается как сумма площадей всех его элементов: площадь основания с обеих сторон + площадь пластин с обеих сторон. Площадь торцов основания не учитывается, так там квадратных сантиметров ну совсем немного будет.

Пример:
радиатор из примера выше для конвекционного охлаждения.
Размеры основания: 70х80мм
Размер ребра: 30х80мм
Кол-во ребер: 8
Площадь основания: 2х7х8=112кв.см
Площадь ребра: 2х3х8=48кв.см.
Общая площадь: 112+8х48=496кв.см.

Коэффициент теплового сопротивления радиатор-среда Rрс показывает, на сколько увеличится температура выходящего с радиатора воздуха при увеличении мощности на 1Вт. Для примера, Rрс, равное 0,5 градуса Цельсия на Ватт, говорит нам, что температура увеличится на полградуса при нагреве на 1Вт. Этот параметр считается трехэтажными формулами и нашим кошачьим умам ну никак не под силу: Rрс, как и любое тепловое сопротивление в нашей системе, чем меньше, тем лучше. А уменьшить его можно по-разному - для этого радиаторы чернят химическим путем (например алюминий хорошо затемняется в хлорном железе - не экспериментируйте дома, выделяется хлор!), еще есть эффект ориентировать радиатор в воздухе для лучшего прохождения его вдоль пластин (вертикальный радиатор лучше охлаждается, чем лежачий). Не рекомендуется красить радиатор краской: краска - лишнее тепловое сопротивление. Если только слегка, чтобы темненько было, но не толстым слоем!

В приложении есть небольшая программа , в которой можно посчитать примерную площадь радиатора для какой-нибудь микросхемы или транзистора. С помощью него давайте рассчитаем радиатор для какого-нибудь блока питания.

Схема блока питания.

Блок питания выдает на выходе 12Вольт при токе 1А. Такой же ток протекает через транзистор. На входе транзистора 18Вольт, на выходе 12Вольт, значит, на нем падает напряжение 18-12=6Вольт. С кристалла транзистора рассеивается мощность 6В*1А=6Вт. Максимальная температура кристалла у 2SC2335 150градусов. Давайте не будем эксплуатировать его на предельных режимах, выберем температуру поменьше, для примера, 120градусов. Тепловое сопротивление переход-корпус Rпк у этого транзистора 1,5градуса Цельсия на ватт.

Поскольку фланец транзистора соединен с коллектором, давайте обеспечим электрическую изоляцию радиатора. Для этого между транзистором и радиатором положим изолирующую прокладку из теплопроводящей резины. Тепловое сопротивление прокладки 2градуса Цельсия на ватт.

Для хорошего теплового контакта капнем немного силиконового масла ПМС-200. Это густое масло с максимальной температурой +180градусов, оно заполнит воздушные промежутки, которые обязательно образуются из-за неровности фланца и радиатора и улучшит передачу тепла. Многие используют пасту КПТ-8, но и многие считают её не самым лучшим проводником тепла.
Радиатор выведем на заднюю стенку блока питания, где он будет охлаждаться комнатным воздухом +25градусов.

Все эти значения подставим в программку и посчитаем площадь радиатора. Полученная площадь 113кв.см - это площадь радиатора, рассчитанная на длительную работу блока питания в режиме полной мощности - дольше 10часов. Если нам не нужно столько времени гонять блок питания, можно обойтись радиатором поменьше, но помассивнее. А если мы установим радиатор внутри блока питания, то отпадает необходимость в изолирующей прокладке, без нее радиатор можно уменьшить до 100кв.см.

А вообще, дорогие мои, запас карман не тянет, все согласны? Давайте думать о запасе, чтобы он был и в площади радиатора, и в предельных температурах транзисторов. Ведь ремонтировать аппараты и менять пережаренные транзисторы придется не кому-нибудь, а вам самим! Помните об этом!

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная , правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по по пулярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто , батареи стоят под окнами и обеспечивают т ребуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты , основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее , можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов .

Кратко о существующих типах радиаторов отопления

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.

Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь . Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно .

Возможно, такие батареи МС -140— 500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу.Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
Чг ТС Ал АА БМ
Давление максимальное (атмосфер)
рабочее 6-9 6-12 10-20 15-40 35
опрессовочное 12-15 9 15-30 25-75 57
разрушения 20-25 18-25 30-50 100 75
Ограничение по рН (водородному показателю) 6,5-9 6,5-9 7-8 6,5-9 6,5-9
Подверженность коррозии под воздействием:
кислорода нет да нет нет да
блуждающих токов нет да да нет да
электролитических пар нет слабое да нет слабое
Мощность секции при h=500 мм; Dt=70 ° , Вт 160 85 175-200 216,3 до 200
Гарантия, лет 10 1 3-10 30 3-10

Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр пл ощади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q – требуемая теплоотдача от радиаторов отопления.

S – площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет :

N = Q / Qус

N – рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м ) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 В т т епловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h × 40 (34 )

где h – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам . Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем , подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D × Е × F × G × H × I × J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по по рядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А :

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В :

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень - стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку » — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 ° С и ниже – D= 1,5
  • — 25÷ — 35 ° С D= 1,3
  • до – 20 ° С D= 1,1
  • не ниже – 15 ° С D= 0,9
  • не ниже – 10 ° С D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е :

  • До 2,7 м Е = 1, 0
  • 2,8 3, 0 м Е = 1, 05
  • 3,1 3, 5 м Е = 1, 1
  • 3,6 4, 0 м Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещениеF= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G :

  • обычные деревянные рамы с двойным остеклением – G= 1,27
  • окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1,0
  • однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85

Н – коэффициент пл ощади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н :

  • Отношение менее 0,1 – Н = 0, 8
  • 0,11 ÷ 0,2 – Н = 0, 9
  • 0,21 ÷ 0,3 – Н = 1, 0
  • 0,31÷ 0,4 – Н = 1, 1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки , зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J :

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны части чно прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом– J= 1,2

⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка , многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Во время работы полупроводникового прибора в его кристалле выделяется мощность, которая приводит к разогреву последнего. Если тепла выделяется больше, чем рассеивается в окружающем пространстве, то температура кристалла будет расти и может превысить максимально допустимую. При этом его структура будет необратимо разрушена.

Следовательно, надежность работы полупроводниковых приборов во многом определяется эффективностью их охлаждения . Наиболее эффективным является конвективный механизм охлаждения, при котором тепло уносит поток газообразного или жидкого теплоносителя, омывающего охлаждаемую поверхность.

Чем больше охлаждаемая поверхность, тем эффективнее охлаждение, и поэтому мощные полупроводниковые приборы нужно устанавливать на металлические радиаторы, имеющие развитую охлаждаемую поверхность. В качестве теплоносителя обычно используется окружающий воздух.

По способу перемещения теплоносителя различают :

  • естественную вентиляцию;
  • принудительную вентиляцию.

В случае естественной вентиляции перемещение теплоносителя осуществляется за счет тяги, возникающей возле нагретого радиатора. В случае принудительной вентиляции перемещение теплоносителя осуществляется с помощью вентилятора. Во втором случае можно получить большие скорости потока и, соответственно, лучшие условия охлаждения.

Тепловые расчеты можно сильно упростить, если использовать тепловую модель охлаждения (рис. 18.26) Здесь разница между температурой кристалла T J и температурой среды Т A вызывает тепловой поток, движущийся от кристалла к окружающей среде, через тепловые сопротивления R JC (кристалл - корпус), R CS (корпус - радиатор) и R SA (радиатор - окружающая среда).

Рис 18.26. Тепловая модель охлаждения

Тепловое сопротивление имеет размерность °С/Вт. Суммарное максимальное тепловое сопротивление R JA на участке кристалл - окружающая среда можно найти по формуле:

где Р ПП - мощность, рассеиваемая на кристалле полупроводникового прибора, Вт.

Тепловое сопротивление R JC и R CS указывается в справочных данных на полупроводниковые приборы. Например, согласно справочным данным, на транзистор IRFP250N, его тепловое сопротивление на участке кристалл- радиатор равно R JC + R CS = 0,7 + 0,24 = 0,94 °С/ Вт.

Это означает, что если на кристалле выделяется мощность 10 Вт, то его температура будет на 9,4 °С больше температуры радиатора.

Тепловое сопротивление радиатора можно найти по формуле:

На рис. 18.27 приводятся графические зависимости между периметром сечения алюминиевого радиатора и его тепловым сопротивлением для естественного (красная линия) и принудительного (синяя линия) охлаждения воздушным потоком.

По умолчанию считается, что :

Если условия охлаждения отличаются от принятых по умолчанию, то необходимую поправку можно внести, воспользовавшись графиками на рис. 18.28 - рис. 18.30.

Рис. 18.27. Зависимости между сечением алюминиевого радиатора и его тепловым сопротивлением

Рис. 18.28. Поправочный коэффициент на разницу температуры радиатора и окружающей среды

Рис. 18.29. Поправочный коэффициент на скорость воздушного потока

Рис. 18.30. Поправочный коэффициент на длину радиатора

Для примера рассчитаем радиатор, обеспечивающий охлаждение транзистора ЭРСТ, состоящего из 20-ти транзисторов типа IRFP250N. Расчет радиатора можно вести для одного транзистора, а затем полученный размер увеличить в 20 раз.

Так как на ключевом транзисторе рассеивается суммарная мощность 528 Вт, то на каждом транзисторе IRFP250N рассеивается мощность 528/20 = 26,4 Вт. Радиатор должен обеспечивать максимальную температуру кристалла транзистора не более +110 °С при максимальной температуре окружающей среды +40 °С.

Найдем тепловое сопротивление R JA для одного транзистора IRFP250N:

Теперь найдем тепловое сопротивление радиатора :

Зная максимальную температуру кристалла и тепловое сопротивление на участке кристалл-радиатор, определим максимальную температуру радиатора:

По графику (рис. 18.28) определим поправочный коэффициент Кт на разницу температуры радиатора и окружающей среды:

Для охлаждения радиатора используется вентилятор типа 1,25ЭВ-2,8-6-3270У4, имеющий производительность 280 м3/ч. Чтобы вычислить скорость потока, нужно разделить производительность на сечение воздуховода, продуваемого вентилятором.

Если воздуховод имеет площадь поперечного сечения:

то скорость воздушного потока будет равна:

По графику (рис. 18.29) определим поправочный коэффициент K v на реальную скорость воздушного потока:

Допустим, что в нашем распоряжении имеется большое количество готовых радиаторов, имеющих периметр сечения 1050 мм и длину 80 мм. По графику (рис. 18.30) определим поправочный коэффициент K L на длину радиатора:

Чтобы найти общую поправку, перемножим все поправочные коэффициенты:

С учетом поправок, радиатор должен обеспечивать тепловое сопротивление :

С помощью графика (рис. 18.27) найдем, что для одного транзистора требуется радиатор с периметром сечения 200 мм. Для группы из 20-ти транзисторов IRFP250N радиатор должен иметь периметр сечения не менее 4000 мм. Так как имеющиеся в распоряжении радиаторы имеют периметр 1050 мм, то придется объединить 4 радиатора.

На диоде ЭРСТ рассеивается меньшая мощность, но из конструктивных соображений для него можно использовать аналогичный радиатор.

Зачастую производители охладителей указывают площадь поверхности радиатора, а не периметр и длину.

Чтобы из предлагаемой методики получить площадь радиатора, достаточно умножить длину радиатора на его периметр S P = 400 8 = 3200 см2.

Микросхема УМЗЧ обязательно должна быть установлена на радиаторе – ведь даже в состоянии покоя на ней рассеивается мощность, равная P0=UпI0=(2 25) 0,07=3,5 Вт. Чтобы рассчитать необходимую площадь радиатора, вычислим максимальную рассеиваемую мощность для случая работы в идеальном классе В:
где Uп – полное напряжение источника питания, Rн – сопротивление нагрузки, Р0 – мощность, рассеиваемая в режиме покоя.
При полном напряжении источника питания Uп =50 В, Rн =8 Ом на корпусе микросхемы должна рассеиваться мощность около 19,3 Вт. Ясно, что температура кристалла при работе всегда должна быть ниже 150ºС. Примем температуру окружающего воздуха 53 ºС, тогда тепловое сопротивление переход – окружающая среда должно быть меньше, чем: (150-53)/19,3=5,0 ºС/Вт.

Обычно сумма тепловых сопротивлений корпус – радиатор и радиатор – окружающая среда оказываются меньше, чем 2,0 ºС/Вт. Тепловое сопротивление корпус – радиатор зависит от способа установки микросхемы. Если использовано непосредственное соединение металл – металл, тепловое сопротивление будет примерно 1,0 ºС/Вт при использовании теплопроводной пасты и 1,2 ºС/Вт при ее отсутствии.

При наличии слюдяной прокладки между корпусом и радиатором тепловое сопротивление можно считать равным 1,6 ºС/Вт и 3,4 ºС/Вт соответственно при применении теплопроводной пасты и без нее. Рассмотрим для примера крепление микросхемы к радиатору через слюдяную прокладку с применением теплопроводной пасты. Тепловое сопротивление радиатора должно быть меньше чем 5,0 – 2,0 - 1,6 = 1,4 ºС/Вт. Это рекомендуемое тепловое сопротивление радиатора для данной конструкции.

Полезно оценить результаты расчетов радиатора с помощью какой-нибудь программы, например, . Самый прикидочный расчет площади охлаждающей поверхности радиатора: 20 квадратных сантиметров на каждый ватт рассеиваемой микросхемой мощности.
Для радиаторов, выполненных из алюминиевых сплавов с ребрами не тоньше 3 мм при шаге ребер не менее 10 мм и свободном потоке воздуха площадь радиатора можно оценить следующей приближенной формулой: S[кв см]≈600/Rθр-с[ºС/Вт]=600/1,4=430 кв см.
Как уже указывалось, микросхема LM1875 снабжена эффективной схемой тепловой защиты. Когда температура кристалла микросхемы достигнет 170 ºС, схема тепловой защиты срабатывает, и усилитель выключается. Включение происходит после понижения температуры кристалла до 145 ºС. Однако, если температура кристалла снова начнет повышаться, то теперь отключение произойдет уже при 150 ºС.

http://proacustic.ru/teplootvod.html

ОУ, выходная мощность которых превышает 1 Вт, обычно требуют установки теплоотвода (радиатора) для охлаждения кристалла. Напомню, что усилитель, работающий в режиме AB, имеет КПД около 50%. Это означает, что он выделяет столько же мощности в виде тепла, сколько отдает в нагрузку. Поэтому для охлаждения кристалла микросхемы (транзистора) необходимо использовать теплоотвод.

Максимальная температура, при которой кристалл близок к разрушению, но еще сохраняет работоспособность, составляет 150 °С. При этом температура корпуса ниже в связи с тепловыми потерями при переходе от кристалла к корпусу и, как правило, не превышает 100 °С. Нормальная температура кристалла составляет 75 °С, а радиатора -50-60 °С. Такая температура соответствует болевому порогу кожи человека, поэтому есть очень простое правило: если вы не обжигаетесь, коснувшись радиатора рукой, его температура находится в норме (конечно, при условии хорошего контакта между радиатором и тепловыделяющим элементом).

Стоит также отметить, что срок службы микросхемы напрямую зависит от ее температуры. Существует правило, гласящее, что при увеличении температуры кристалла на 10 °С срок его службы падает вдвое. Это значит, что при увеличении температуры кристалла с 60 до
100 °С срок его службы снизится уже в 1 б раз! Поэтому эффективное.охлаждение - залог надежной и долгой работы устройства.

Радиаторы, используемые для охлаждения радиоэлементов, классифицируются по строению на:

Ребристые (рис. 2.17, а);

Игольчатые (рис. 2.17, б).
По типу вентиляции:

С естественной вентиляцией;

С принудительной вентиляцией.

Эти типы радиаторов отличаются плотностью расположения ребер или игл. Для радиаторов с естественной вентиляцией расстояние между ребрами (иглами) должно быть не менее 4 мм. К тому же такие радиаторы рассчитаны для работы только в вертикальном положении, когда воздух под действием естественных сил движется между ребрами. Если расстояние между ребрами (иглами) составляет около 2 мм, то такой радиатор рассчитан на принудительную вентиляцию и требует установки вентилятора.

По применяемым материалам:

Цельные алюминиевые;

Цельные медные;

Алюминиевые с медным основанием.

Существуют методики точного расчета радиаторов, учитывающие рассеиваемую мощность, параметры окружающей среды, конфигурацию, материал радиатора и т.д. Однако эти методики нужны на этапе проектирования теплоотвода. Радиолюбители редко самостоятельно изготавливают радиаторы, чаще используя готовые, взятые из старой радиоаппаратуры. В конечном итоге нас интересует только один параметр - максимальная рассеиваемая мощность для этого радиатора. Чтобы определить его, достаточно знать всего две характеристики: тип
вентиляции и площадь рассеивающей поверхности (проще говоря, площадь радиатора).

Площадь ребристого радиатора вычисляется как сумма площадей всех его ребер и площади основания. Заметьте, что у одного ребра две излучающие поверхности. Это значит, что ребро размером 1×1 см имеет площадь 2 см2. Площадь игольчатого радиатора вычисляется как сумма площадей всех его игл и площади основания. Площадь одной иглы можно вычислить по формуле:

S= π (r 1 + r 2 ) l

(r 1 - радиус нижнего основания усеченного конуса; r 2 - радиус верхнего основания усеченного конуса; l - образующая усеченного конуса (длина боковой стороны))

После этого допустимая рассеиваемая мощность может быть оценена по формуле:

где Р - допустимая рассеваемая мощность, Вт; S - площадь радиатора, см2; к - коэффициент, учитывающий тип вентиляции. Для естественной вентиляции к = 33, для принудительной вентиляции к = 11.

Тепловое сопротивление радиатора может быть оценено по формулеRth=(51*k)/S , описанной здесь: http://forum.cxem.net/index.php?showtopic=32031

Размерность теплового сопротивления - градус/Ватт. То есть насколько температура кристалла будет выше температуры корпуса при выделении 1 Вт тепла.
Тепловое сопротивление перехода корпус - окружающая среда можно посчитать по приблизительной формуле:
Rth=(51*k)/S , где Rth – тепловое сопротивление радиатора в C/W, S – площадь радиатора (в данном случае - площадь детали) в см2, k – коэффициент, учитывающий тип вентиляции (Для естественной вентиляции k = 33, для принудительной вентиляции k = 11).
Тепловые сопротивления детали и радиатора нужно сложить, задать температуру окружающей среды и выделяемую мощность, чтобы получить температуру кристалла.
Чтобы не ломать сильно голову по поводу теплопроводности материалов, скажу что тепловое сопротивление перехода кристалл - корпус обычно находится в пределах от 1 C/W для мощных ИС, и до 3 C/W для маломощных.

В последние годы в радиолюбительской практике все чаще применяются системы охлаждения для процессоров персональных компьютеров (cooler - кулеры). Кулеры современных процессоров рассчитаны на рассеивание мощности около 100 Вт даже при небольшой вентиляции.

Для крепления микросхемы к основанию радиатора можно использовать шурупы с плоской шляпкой либо, при наличии метчика, нарезать резьбу в радиаторе и закрепить микросхему винтом. Между основанием радиатора и корпусом микросхемы обязательно должен быть слой термопасты для улучшения теплопроводности. Наилучшие показатели теплопроводности показывают пасты типа КПТ-81 или «Алсил-3». Их можно купить в любом компьютерном магазине или магазине радиодеталей. Теплопроводность термопаст составляет при-
мерно 0,7- с учетом того, что площадь контакта - 1 -2 см2, тепловое сопротивление термопасты - примерно 10~4 °С/Вт (несоизмеримо мало по сравнению с тепловым сопротивлением перехода кристалл-подложка либо радиатора и окружающей среды), поэтому при тепловом расчете системы охлаждения этой потерей можно пренебречь.

http://forum.cxem.net/index.php?showtopic=32031

Что бы совсем разобратся нужно на конкретном примере. К примеру есть ИМС длина 2см ширина 1см толщина 0,5 см Мощность 535 мВт Температура воздуха 22 по цельсию. Как считать?

  1. Определяем излучающую площадь микросхемы. Учтем, что она брюхом скорее всего будет прилегать к плате, так что там конвекции не будет. Возьмем эквивалентную площадь брюха как ½ от геометрической площади:
    2(2*0,5)+2(1*0,5)+1*2+1*1=2+1+2+1=6 см2 – полная излучающая площадь микросхемы
    2. Подсчитаем тепловое сопротивление перехода корпус – воздух:
    Rth=(51*k)/S=(51*33)/6=280,5 C/W
    3. Микросхема судя по всему маломощная, прими её тепловое сопротивление равным 3 C/W (или можно рассчитать точно, если знаете как)
    4. Общее тепловое сопротивление равно 280,5+3=283,5 C/W Это значит что температура кристалла будет на 283,5 градуса выше температуры окр. среды при выделении 1 Вт. тепла.
    5. Определяем температуру кристалла: 283,5*0,535+22=173 =)
    6. Определяем температуру корпуса: 280,5*0,535+22=172

    Резонный вопрос – есть ли здесь ошибка? Ошибка может быть в определении Rth корпуса микросхемы... эта формула используется для определения теплового сопротивления ребристых радиаторов, по этому в области малых значений площади может давать не верный результат. Еще недостатком методики является то, что мы не учитываем охлаждения микросхемы через саму плату.

    P.S. хотя если предположить, что микросхема обдувается (k=11). то получается вполне вменяемый результат - 93 C/W

В малосигнальных схемах транзисторы редко рассеивают мощность более 100 мВт. Распространение тепла вдоль проводников и конвекция от корпуса транзистора в окружающий воздух оказываются достаточными, чтобы избежать перегрева /?-и-перехода.

Транзисторы, на которых рассеиваются большие мощности, - в эмиттерных повторителях мощных источников питания и в выходных каскадах усилителей мощности - требуют специальных средств для отвода тепла. Обычно теплоотводы (радиаторы) используются с транзисторами, которые приспособлены для работы с радиаторами. На рис. 9.35, а изображен гофрированный металлический радиатор, который удваивает рассеяние тепла транзистором в корпусе Т05, например, транзистором BFY50. Мощный транзистор (рис. 9.35, б) в корпусе ТОЗ монтируется на массивном ребристом радиаторе. Установленный таким образом транзистор допускает рассеяние мощности 30 Вт; без теплоотвода рассеиваемая мощность ограничена 3 Вт.

Рис. 9.35. Радиаторы.

Электрическая изоляция

Корпус радиатора обычно привинчивается непосредственно к заземленному металлическому шасси или к корпусу прибора, или в некоторых случаях шасси само может служить теплоотводом. Во всех этих случаях необходимо помнить, что корпус транзистора обычно соединен с коллектором, и поэтому необходима электрическая изоляция между корпусом транзистора и радиатором. Слюдяные или лавсановые шайбы обеспечивают изоляцию без значительного уменьшения теплопроводности. Силиконовая смазка, нанесенная на каждую сторону шайбы, гарантирует хороший тепловой контакт.

Тепловое сопротивление

Качество теплоотвода обычно выражается величиной теплового сопротивления, которое учитывает тот факт, что скорость распространения тепла пропорциональна разности температур между источником тепла и внешней средой (сравните с электрическим сопротивлением, в котором скорость движения заряда пропорциональна разности потенциалов. [Только с очень большой натяжкой можно уподобить электрический ток скорости движения зарядов. - Примеч. перев.]).

Как это часто бывает с физическими понятиями, единица теплового сопротивления (градусы Цельсия на ватт) подает хорошую идею для его формального определения, которое выглядит так:

Другими словами, корпус теплоотвода, имеющий тепловое сопротивление 3 °С/Вт, при рассеиваемой мощности 30 Вт будет нагреваться до температуры на 3 х 30 °С = 90 °С выше температуры окружающей среды.

Полную картину установившегося теплового равновесия между транзистором и окружающей средой дает тепловая схема, приведенная на рис. 9.36. Тепловая мощность Р, выделяемая транзистором, рассматривается как «генератор теплового тока», который создает разность температур на различных тепловых сопротивлениях в системе.

Максимально допустимая температура р-n-перехода обычно составляет 150 °С, а температуру окружающей среды можно принять равной 50 °С - это температура, при которой допускается работа электронной аппаратуры общего назначения.

Производители транзисторов указывают безопасную максимальную температуру корпуса для своих транзисторов (часто 125 °С), в этом случае в, с

Рис. 9.36. Тепловая схема транзистора и его окружения.

исключается из наших вычислений, и мы спускаемся на одну ступеньку вниз по лестнице из резисторов на рис. 9.36. Кроме того, теплопроводность от корпуса транзистора к радиатору обычно столь хороша, что 6 CS 6 SA , так что тепловое сопротивление между радиатором и воздухом 6 SA является доминирующим фактором в большинстве вычислений. Зная мощность Р, рассеиваемую транзистором, легко найти температуру корпуса T casc , предполагая, что температура окружающей среды равна 50 °С:

Сверяясь с данными производителя, теперь можно сказать, может ли этот транзистор рассеивать требуемую мощность при найденной температуре корпуса. Если это не так, то тепловое сопротивление 6 SA должно быть уменьшено путем применения большего радиатора.

Большие ребристые радиаторы для мощных транзисторов обычно имеют температурное сопротивление от 2 до 4 °С/Вт, которое можно уменьшить до 1 °С/Вт путем принудительного охлаждения. С другой стороны, у небольших радиаторов, рассчитанных на транзисторы в корпусе Т05, среднее значение теплового сопротивления около 50 °С/Вт, и с их помощью допустимую мощность рассеяния у таких транзисторов средней мощности, как BFY50 или 2N3053, увеличивают с 0,8 до 1,5 Вт.