Химия. Понятие окислителя и восстановителя Восстановитель принимает или отдает электроны

16.12.2023

8. Классификация химических реакций. ОВР. Электролиз

8.3. Окислительно-восстановительные реакции: общие положения

Окислительно-восстановительными реакциями ( ОВР ) называются реакции, протекающие с изменением степени окисления атомов элементов. В результате этих реакций одни атомы отдают электроны, а другие их принимают.

Восстановитель - атом, ион, молекула или ФЕ, отдающий электроны, окислитель - атом, ион, молекула или ФЕ, принимающий электроны:

Процесс отдачи электронов называется окислением , а процесс принятия - восстановлением . В ОВР обязательно должны быть вещество восстановитель и вещество окислитель. Нет процесса окисления без процесса восстановления и нет процесса восстановления без процесса окисления.

Восстановитель отдает электроны и окисляется, а окислитель принимает электроны и восстанавливается

Процесс восстановления сопровождается понижением степени окисления атомов, а процесс окисления - повышением степени окисления атомов элементов. Сказанное удобно проиллюстрировать схемой (СО - степень окисления):


Конкретные примеры процессов окисления и восстановления (схемы электронного баланса) приведены в табл. 8.1.

Таблица 8.1

Примеры схем электронного баланса

Схема электронного баланса Характеристика процесса
Процесс окисления
Атом кальция отдает электроны, повышает степень окисления, является восстановителем
Ион Cr +2 отдает электроны, повышает степень окисления, является восстановителем
Молекула хлора отдает электроны, атомы хлора повышают степень окисления от 0 до +1, хлор - восстановитель
Процесс восстановления
Атом углерода принимает электроны, понижает степень окисления, является окислителем
Молекула кислорода принимает электроны, атомы кислорода понижают степень окисления от 0 до −2, молекула кислорода является окислителем
Ион принимает электроны, понижает степень окисления, является окислителем

Важнейшие восстановители : простые вещества металлы; водород; углерод в форме кокса; оксид углерода(II); соединения, содержащие атомы в низшей степени окисления (гидриды металлов , , сульфиды , иодиды , аммиак ); самый сильный восстановитель - электрический ток на катоде.

Важнейшие окислители : простые вещества - галогены, кислород, озон; концентрированная серная кислота; азотная кислота; ряд солей (KClO 3 , KMnO 4 , K 2 Cr 2 O 7); пероксид водорода H 2 O 2 ; наиболее сильный окислитель - электрический ток на аноде.

По периоду окислительные свойства атомов и простых веществ усиливаются: фтор - самый сильный окислитель из всех простых веществ . В каждом периоде галогены образуют простые вещества с наиболее выраженными окислительными свойствами.

В группах А сверху вниз окислительные свойства атомов и простых веществ ослабевают, а восстановительные - усиливаются.

Для однотипных атомов восстановительные свойства усиливаются с увеличением их радиуса; например, восстановительные свойства аниона
I − выражены сильнее, чем аниона Cl − .

Для металлов окислительно-восстановительные свойства простых веществ и ионов в водном растворе определяются положением металла в электрохимическом ряду: слева направо (сверху вниз) восстановительные свойства простых металлов ослабевают: самый сильный восстановитель - литий .

Для ионов металлов в водном растворе слева направо в этом же ряду соответственно окислительные свойства усиливаются: наиболее сильный окислитель - ионы Au 3 + .

Для расстановки коэффициентов в ОВР можно пользоваться способом, основанным на составлении схем процессов окисления и восстановления. Этот способ называется методом электронного баланса .

Суть метода электронного баланса состоит в следующем.

1. Составляют схему реакции и определяют элементы, которые изменили степень окисления.

2. Составляют электронные уравнения полуреакций восстановления и окисления.

3. Поскольку число электронов, отданных восстановителем, должно быть равно числу электронов, принятых окислителем, методом наименьшего общего кратного (НОК) находят дополнительные множители.

4. Дополнительные множители проставляют перед формулами соответствующих веществ (коэффициент 1 опускается).

5. Уравнивают числа атомов тех элементов, которые не изменили степень окисления (вначале - водород по воде, а затем - числа атомов кислорода).

Пример составления уравнения окислительно-восстановительной реакции

методом электронного баланса.

Находим, что атомы углерода и серы изменили степень окисления. Составляем уравнения полуреакций восстановления и окисления:

Для этого случая НОК равно 4, а дополнительными множителями будут 1 (для углерода) и 2 (для серной кислоты).

Найденные дополнительные множители проставляем в левой и правой частях схемы реакции перед формулами веществ, содержащих углерод и серу:

C + 2H 2 SO 4 → CO 2 + 2SO 2 + H 2 O

Уравниваем число атомов водорода, поставив перед формулой воды коэффициент 2, и убеждаемся, что число атомов кислорода в обеих частях уравнения одинаковое. Следовательно, уравнение ОВР

C + 2H 2 SO 4 = CO 2 + 2SO 2 + 2H 2 O

Возникает вопрос: в какую часть схемы ОВР следует поставить найденные дополнительные множители - в левую или правую?

Для простых реакций это не имеет значения. Однако следует иметь в виду: если определены дополнительные множители по левой части уравнения, то и коэффициенты проставляются перед формулами веществ в левой части; если же расчеты проводились для правой части, то коэффициенты ставятся в правой части уравнения. Например:

По числу атомов Al в левой части:

По числу атомов Al в правой части:

В общем случае, если в реакции участвуют вещества молекулярного строения (O 2 , Cl 2 , Br 2 , I 2 , N 2), то при подборе коэффициентов исходят именно из числа атомов в молекуле:

Если в реакции с участием HNO 3 образуется N 2 O, то схему электронного баланса для азота также лучше записывать исходя из двух атомов азота .

В некоторых окислительно-восстановительных реакциях одно из веществ может выполнять функцию как окислителя (восстановителя), так и солеобразователя (т.е. участвовать в образовании соли).

Такие реакции характерны, в частности, для взаимодействия металлов с кислотами-окислителями (HNO 3 , H 2 SO 4 (конц)), а также солей-окислителей (KMnO 4 , K 2 Cr 2 O 7 , KClO 3 , Ca(OCl) 2) с соляной кислотой (за счет анионов Cl − соляная кислота обладает восстановительными свойствами) и другими кислотами, анион которых - восстановитель.

Составим уравнение реакции меди с разбавленной азотной кислотой:

Видим, что часть молекул азотной кислоты расходуется на окисление меди, восстанавливаясь при этом до оксида азота(II), а часть идет на связывание образовавшихся ионов Cu 2+ в соль Cu(NO 3) 2 (в составе соли степень окисления атома азота такая же, как в кислоте, т.е. не изменяется). В таких реакциях дополнительный множитель для элемента-окислителя всегда ставится в правой части перед формулой продукта восстановления, в данном случае - перед формулой NO, а не HNO 3 или Cu(NO 3) 2 .

Перед формулой HNO 3 ставим коэффициент 8 (две молекулы HNO 3 расходуются на окисление меди и шесть - на связывание в соль трех ионов Cu 2+), уравниваем числа атомов Н и О и получаем

3Cu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O.

В других случаях кислота, например соляная, может одновременно быть как восстановителем, так и участвовать в образовании соли:

Пример 8.5. Рассчитайте, какая масса HNO 3 расходуется на солеобразование, когда в реакцию, уравнение которой

вступает цинк массой 1,4 г.

Решение. Из уравнения реакции видим, что из 8 моль азотной кислоты только 2 моль пошло на окисление 3 моль цинка (перед формулой продукта восстановления кислоты, NO, стоит коэффициент 2). На солеобразование израсходовалось 6 моль кислоты, что легко определить, умножив коэффициент 3 перед формулой соли Zn(HNO 3) 2 на число кислотных остатков в составе одной формульной единицы соли, т.е. на 2.

n (Zn) = 1,4/65 = 0,0215 (моль).

x = 0,043 моль;

m (HNO 3) = n (HNO 3) · M (HNO 3) = 0,043 ⋅ 63 = 2,71 (г)

Ответ : 2,71 г.

В некоторых ОВР степень окисления изменяют атомы не двух, а трех элементов.

Пример 8.6. Расставьте коэффициенты в ОВР, протекающей по схеме FeS + O 2 → Fe 2 O 3 + SO 2 , используя метод электронного баланса.

Решение. Видим, что степень окисления изменяют атомы трех элементов: Fe, S и O. В таких случаях числа электронов, отданных атомами разных элементов, суммируются:

Расставив стехиометрические коэффициенты, получаем:

4FeS + 7O 2 = 2Fe 2 O 3 + 4SO 2 .

Рассмотрим примеры решения других типов экзаменационных заданий на эту тему.

Пример 8.7. Укажите число электронов, переходящих от восстановителя к окислителю при полном разложении нитрата меди(II), массой 28,2 г.

Решение. Записываем уравнение реакции разложения соли и схему электронного баланса ОВР; M = 188 г/моль.

Видим, что 2 моль O 2 образуется при разложении 4 моль соли. При этом от атомов восстановителя (в данном случае это ионы ) к окислителю (т.е. к ионам ) переходит 4 моль электронов: . Поскольку химическое количество соли n = 28,2/188 = = 0,15 (моль), имеем:

2 моль соли - 4 моль электронов

0,15 моль - x

n (e ) = x = 4 ⋅ 0,15/2 = 0,3 (моль),

N (e ) = N A n (e ) = 6,02 ⋅ 10 23 ⋅ 0,3 = 1,806 ⋅ 10 23 (электронов).

Ответ : 1,806 ⋅ 10 23 .

Пример 8.8. При взаимодействии серной кислоты химическим количеством 0,02 моль с магнием атомы серы присоединили 7,224 ⋅ 10 22 электронов. Найдите формулу продукта восстановления кислоты.

Решение. В общем случае схемы процессов восстановления атомов серы в составе серной кислоты могут быть такими:

т.е. 1 моль атомов серы может принять 2, 6 или 8 моль электронов. Учитывая, что в состав 1 моль кислоты входит 1 моль атомов серы, т.е. n (H 2 SO 4) = n (S), имеем:

n (e ) = N (e )/N A = (7,224 ⋅ 10 22)/(6,02 ⋅ 10 23) = 0,12 (моль).

Рассчитываем количество электронов, принятых 1 моль кислоты:

0,02 моль кислоты принимают 0,12 моль электронов

1 моль - х

n (e ) = x = 0,12/0,02 = 6 (моль).

Этот результат соответствует процессу восстановления серной кислоты до серы:

Ответ : сера.

Пример 8.9. В реакции углерода с азотной концентрированной кислотой образуются вода и два солеобразующих оксида. Найдите массу вступившего в реакцию углерода, если атомы окислителя в этом процессе приняли 0,2 моль электронов.

Решение. Взаимодействие веществ протекает согласно схеме реакции

Составляем уравнения полуреакций окисления и восстановления:

Из схем электронного баланса видим, что если атомы окислителя () принимают 4 моль электронов, то в реакцию вступает 1 моль (12 г) углерода. Составляем и решаем пропорцию:

4 моль электронов - 12 г углерода

0,2 - x

x = 0,2 ⋅ 12 4 = 0,6 (г).

Ответ : 0,6 г.

Классификация окислительно-восстановительных реакций

Различают межмолекулярные и внутримолекулярные окислительно-восстановительные реакции.

В случае межмолекулярных ОВР атомы окислителя и восстановителя входят в состав разных веществ и являются атомами разных химических элементов.

В случае внутримолекулярных ОВР атомы окислителя и восстановителя входят в состав одного и того же вещества. К внутримолекулярным относятся реакции диспропорционирования , в которых окислитель и восстановитель - это атомы одного и того же химического элемента в составе одного и того же вещества. Такие реакции возможны для веществ, содержащих атомы с промежуточной степенью окисления.

Пример 8.10. Укажите схему ОВР диспропорционирования:

1) MnO 2 + HCl → MnCl 2 + Cl 2 + H 2 O

2) Zn + H 2 SO 4 → ZnSO 4 + H 2

3) KI + Cl 2 → KCl + I 2

4) Cl 2 + KOH → KCl + KClO + H 2 O

Решение . Реакции 1)–3) являются межмолекулярными ОВР:

Реакцией диспропорционирования является реакция 4), так как в ней атом хлора и окислитель, и восстановитель:

Ответ : 4).

Качественно оценить окислительно-восстановительные свойства веществ можно на основании анализа степеней окисления атомов в составе вещества:

1) если атом, отвечающий за окислительно-восстановительные свойства, находится в высшей степени окисления, то этот атом уже не может отдавать электроны, а может их только принимать. Поэтому в ОВР данное вещество будет проявлять только окислительные свойства . Примеры таких веществ (в формулах указана степень окисления атома, отвечающего за окислительно-восстановительные свойства):

2) если атом, отвечающий за окислительно-восстановительные свойства, находится в низшей степени окисления, то данное вещество в ОВР будет проявлять только восстановительные свойства (принимать электроны данный атом уже не может, он может только их отдавать). Примеры таких веществ: , . Поэтому только восстановительные свойства в ОВР проявляют все анионы галогенов (исключение F − , для окисления которого используют электрический ток на аноде), сульфид-ион S 2− , атом азота в молекуле аммиака , гидрид-ион H − . Только восстановительными свойствами обладают металлы (Na, K, Fe);

3) если атом элемента находится в промежуточной степени окисления (степень окисления больше минимальной, но меньше максимальной), то соответствующее вещество (ион) будет в зависимости от условий проявлять двойственные окислительно -восстановительные свойства : более сильные окислители будут эти вещества (ионы) окислять, а более сильные восстановители - восстанавливать. Примеры таких веществ: сера , так как высшая степень окисления атома серы +6, а низшая −2, оксид серы(IV), оксид азота(III) (высшая степень окисления атома азота +5, а низшая −3), пероксид водорода (высшая степень окисления атома кислорода +2, а низшая −2). Двойственные окислительно-восстановительные свойства проявляют ионы металлов в промежуточной степени окисления: Fe 2+ , Mn +4 , Cr +3 и др.

Пример 8.11. Не может протекать окислительно-восстановительная реакция, схема которой:

1) Cl 2 + KOH → KCl + KClO 3 + H 2 O

2) S + NaOH → Na 2 S + Na 2 SO 3 + H 2 O

3) KClO → KClO 3 + KClO 4

4) KBr + Cl 2 → KCl + Br

Решение. Не может протекать реакция, схема которой указана под номером 3), так как в ней присутствует восстановитель , но нет окислителя:

Ответ : 3).

Для некоторых веществ окислительно-восстановительная двойственность обусловлена наличием в их составе различных атомов как в низшей, так и в высшей степени окисления; например, соляная кислота (HCl) за счет атома водорода (высшая степень окисления, равная +1) - окислитель, а за счет аниона Cl − - восстановитель (низшая степень окисления).

Невозможна ОВР между веществами, проявляющими только окислительные (HNO 3 и H 2 SO 4 , KMnO 4 и K 2 CrO 7) или только восстановительные свойства (HCl и HBr, HI и H 2 S)

ОВР чрезвычайно распространены в природе (обмен веществ в живых организмах, фотосинтез, дыхание, гниение, горение), широко используются человеком в различных целях (получение металлов из руд, кислот, щелочей, аммиака и галогенов, создание химических источников тока, получение тепла и энергии при горении различных веществ). Отметим, что ОВР часто и осложняют нашу жизнь (порча продуктов питания, плодов и овощей, коррозия металлов - все это связано с протеканием различных окислительно-восстановительных процессов).

Химические реакции, протекающие с изменением степеней окисления элементов, называются окислительно-восстановительными.

Основные положения теории окисления-восстановления

1. Процесс отдачи электронов атомом или ионом называется окислением:

S 0 - 4e - ® S 4+ (окисление)

Атом или ион, который отдаёт электроны, называется восстановителем (восстановитель): Zn 0 -2e - ® Zn 2+ (окисление).

2. Процесс присоединения электронов атомом или ионом называется восстановлением: S 6+ + 8e - ® S 2- (восстановление).

Атомы или ионы, принимающие электроны, называются окислителями (окислитель): Cl - + e - ® Cl 0 (восстановление).

Окислитель во время реакции восстанавливается, а восстановитель окисляется. Окисление невозможно без одновременно протекающего с ним восстановления и наоборот, восстановление одного вещества невозможно без одновременного окисления другого.

3. В окислительно-восстановительных процессах количество электронов, отданных в процессе окисления, всегда должно быть равно количеству электронов, принятых в процессе восстановления.

Пример:

Cu 2+ O 2- + H 2 0 = Cu 0 + H 2 O 2-

окислитель Cu 2+ +2e - ® Cu 0 восстановление

восстановитель H 2 0 - 2e - ® 2H + окисление

4. Уравнивание количества отданных и принятых электронов производят путём подбора коэффициентов с предварительным составлением уравнения электронного баланса

Пример:

Pb 2+ S 2- + HNO 3 ® S 0 + Pb 2+ (NO 3) 2 + N 2+ O 2- + H 2 O

Восстановитель S 2- - 2e - ® S 0 3 окисление

окислитель N 5+ + 3e - ® N 2+ 2 восстановление

3PbS + 8HNO 3 ® 3S + 3Pb(NO 3) 2 + 2NO + 4H 2 O.

5. При составлении уравнения электронного баланса необходимо исходить из такого количества атомов или ионов сколько их входит в состав молекулы исходного вещества, а иногда в состав молекулы продуктов реакции

Пример:

K 2 Cr 2 6+ O 7 + H 2 SO 4 +KJ - ® J 2 0 + Cr 2 3+ (SO 4) 3 + K 2 SO 4 +H 2 O

Окислитель 2Cr 6+ + 6e - ® 2Cr 3+ 2 1 восстановление

восстановитель 2J - - 2e - ® J 2 0 6 3 окисление

6. Окислительно-восстановительные процессы протекают чаще всего при наличии среды: нейтральной, кислой или щелочной.

Подбор коэффициентов в окислительно-восстановительных реакциях

При подборе коэффициентов надо учитывать основное положение: число электронов, отданных восстановлением, равно числу электронов, полученных окислением.

После выявления окислителя, восстановителя, к соответствующему равенству реакции составляют цифровую схему перехода электронов (уравнение электронного баланса).

Пример 1. Al + Cl 2 ® AlCl 3 , гдеAl восстановитель, Cl 2 -окислитель.

Схема перехода электронов:

Al 0 - 3e - ® Al +3 3 1 окисление

Cl 0 + e - ® Cl 1 1 3 восстановление

Из данной схемы видно, что на один окисляющийся атом алюминия требуется три атома хлора, воспринимающие эти три электрона (смотри вторую графу). Следовательно, на каждый атом алюминия необходимо три атома хлора или на два атома алюминия три молекулы хлора. Получаем коэффициенты:

2Al + 3Cl 2 = AlCl 3 .

Пример 2. N 3- H 3 + O 0 2 ® N 2+ O 2- +H 2 O, где O 2 - типичный окислитель, а N 3- H 3 играет роль восстановителя.

Составляем схему (электронный баланс):

N 3- - 5e - ® N +2 5 2 4 окисление

O 0 + 2e - ® O -2 2 5 10 восстановление

На 4 атома азота требуется 10 атомов или 5 молекул кислорода. Получаем коэффициенты:

4NH 3 + 5O 2 = 4NO + 6H 2 O.

Особые случаи составления равенств окислительно-восстановительных реакций

1. Если в реакции число электронов, теряемых восстановителем, и число электронов, принимаемых окислителем, является чётными числами, то при нахождении коэффициентов число электронов делят на общий наибольший делитель.

Пример:

H 2 SO 3 + HClO 3 ® H 2 SO 4 +HCl

Восстановитель S +4 - 2е - ® S +6 6 3 окисление

окислительCl +5 + 6e - ® Cl - 2 1 восстановление

Коэффициентами у восстановителя и окислителя будут не 2 и 6, а 1и 3:

3H 2 SO 3 +3HClO 3 =3H 2 SO 4 +HCl.

Если же число электронов, теряемых восстановителем и приобретаемых окислителем, нечетно, а в результате реакции должно получиться чётное число атомов, то коэффициенты удваиваются.

Пример:

KJ - + KMn +7 O 4 + H 2 S +6 O 4 ® J o 2 + K 2 S +6 O 4 + Mn +2 SO 4 + H 2 O

Восстановитель J - -1e - ® J o 5 10 окисление

Коэффициентами у окислителя и восстановителя будут не 1 и 5, а 2 и 10:

10KJ + 2KMnO 4 + 8H 2 SO 4 = 5J 2 + 6K 2 SO 4 + 2MnSO 4 + 8H 2 O.

2. Иногда восстановитель или окислитель расходуется дополнительно на связывание образующихся в результате реакции продуктов.

Пример:

HBr - + KMn +7 O 4 + HBr ®Br 0 2 + KBr - + Mn +2 Br 2 0 + H 2 O

Восстановитель Br - - e - ® Br 0 5 10 окисление

окислитель Mn +7 + 5e - ® Mn +2 1 2 восстановление

В этой реакции десять молекул HBr реагируют как восстановители, а шесть молекул HBr необходимы для связывания получающихся веществ (солеобразование):

10HBr + 2KMnO 4 + 6HBr = 5Br 2 + 2KBr + 2MnBr 2 + 8H 2 O.

3.Окисляются одновременно и положительные и отрицательные ионы молекулы восстановителя.

Пример:

As 2 +3 S 3 -2 + HN +5 O 3 ® H 3 As +5 O 4 + H 2 S +6 O 4 + N +2 O + H 2 O

Здесь ионы As +3 окисляются в ионы As 2 +3 и одновременно ионы S -2 окисляются в ионы S +6 а анионы N +5 восстанавливаются до N +2 .

2Аs +3 - 4e - ® 2Аs +5

восстановители 3S -2 - 24e - ® 3S +6 окисление

окислитель N +5 + 3e - ® N +2 восстановление

В этой реакции на каждые три молекулы As 2 S 3 реагируют 28 молекул HNO 3 . Проверяем правильность составления равенств реакции путём подсчёта атомов водорода и кислорода в правой и левой частях. Таким образом, находим, что в реакцию вступают ещё 4 молекулы воды, которые должны быть приписаны к левой части равенства для окончательной его записи:

3As 2 S 3 + 28HNO 3 + 4H 2 O = 6H 3 AsO 4 + 9H 2 SO 4 + 28NO

2As +3 –4e®2As +5 4

3S -2 –24e®3S + 24

Восстановители 2As +3 + 3S -2 - 28e - ®2As +5 + 3S +6 3 окисление

окислитель N +5 + 3e - ®N +2 28 восстановление

4. Восстановителем и окислителем являются ионы одного и того же элемента, но входящие в состав различных веществ.

Пример:

KJ - + KJ +5 O 3 + H 2 SO 4 ® J 0 2 + K 2 SO 4 + H 2 O

Восстановитель J - - е - ® J 0 5 окисление

окислитель J +5 + 5e - ®J 0 1 восстановление

5KJ + KJO 3 + 3H 2 SO 4 = 3J 2 + 3K 2 SO 4 + 3H 2 O.

5.Восстановителем и окислителем являются ионы одного и того же элемента, входящие в состав одного вещества (самоокисление -самовосстановление).

Пример:

HN +3 O 2 ® HN +5 O 3 + N +2 O + H 2 O

Восстановитель N +3 - 2e - ® N +5 1 окисление

окислитель N +3 + e - ® N +2 2 восстановление

Следовательно, равенство реакции

При химических реакциях число и характер связей между взаимодействующими атомами могут меняться, т.е. могут изменяться степени окисления атомов в молекулах.

Реакции, в результате которых изменяются степени окисления атомов, называются окислительно-восстановительными.

Примеры окислительно-восстановительных реакций (сокращенно ОВР):

Изменение степени окисления связано со смещением или передачей электронов. Независимо от того, переходят ли электроны с одного атома на другой или лишь частично оттягиваются одним из атомов, условно говорят об отдаче и присоединении электронов.

Процесс отдачи электронов атомом или ионом называется окислением . Процесс присоединения электронов называется восстановлением .

Вещества, атомы или ионы которых отдают электроны, называются восстановителями . В ходе реакции они окисляются. Вещества, атомы или ионы которых присоединяют электроны, называются окислителями . В ходе реакции они восстанавливаются.

Процессы окисления и восстановления изображаются электронными уравнениями, в которых указывается изменение степени окисления взаимодействующих атомов и число электронов, отданных восстановителем или принятых окислителем.

Примеры уравнений, выражающих процессы окисления:

Уравнения, выражающие процессы восстановления:

Окислительно-восстановительная реакция – это единый процесс, в котором окисление и восстановление протекают одновременно. Окисление одного атома всегда сопровождается восстановлением другого и наоборот. При этом общее число электронов, отдаваемых восстановителем, равно числу электронов, присоединяемых окислителем.

В соответствии с законом эквивалентов массы реагирующих веществ относятся друг к другу как молярные массы их эквивалентов . Эквивалентное количество вещества в ОВР зависит от числа электронов, отдаваемых или присоединяемых его атомами; молярная масса эквивалента рассчитывается по формуле:

, (1)

где М – молярная масса вещества, г/моль

М экв – молярная масса эквивалента вещества, г/моль

–число отдаваемых или присоединяемых.электронов

Например, в реакции

атом марганца присоединяет 5 электронов, поэтому эквивалентным количеством
является 1/5моль, а атом серы отдает 2 электрона и эквивалентным количеством
является 1/2моль . Молярные массы эквивалентов соответственно равны

Типы окислительно-восстановительных реакций

Различают три типа химических ОВР: межмолекулярные, внутримолекулярные и реакции самоокисления-самовосстановления. Отдельную группу составляют электрохимические реакции.

1. Межмолекулярные ОВР - это реакции, в которых окислитель и восстановитель являются разными веществами:

2. Внутримолекулярные ОВР - это реакции, в которых меняются степени окисления разных атомов одной молекулы:

3. Реакции самоокисления-самовосстановления - это реакции, в которых происходит окисление и восстановление атомов одного и того же элемента:

4. Электрохимические реакции - это ОВР, в которых процессы окисления и восстановления разделены пространственно (протекают на отдельных электродах), а электроны передаются от восстановителя к окислителю по внешней электрической цепи:

Окислительно-восстановительные реакции обычно имеют сложный характер, но, зная формулы реагентов и продуктов реакции и умея определять степени окисления атомов, можно легко расставить коэффициенты в уравнении любой ОВР.

Окислитель и восстановитель используют для составления реакции в органической и неорганической химии. Рассмотрим основные характеристики таких взаимодействий, выявим алгоритм составления уравнения и расстановки коэффициентов.

Определения

Окислитель - это атом либо ион, который при взаимодействии с другими элементами принимает электроны. Процесс принятия электронов называют восстановлением, и связан он с понижением степени окисления.

В курсе неорганической химии рассматривается два основных метода расстановки коэффициентов. Восстановитель и окислитель в реакциях определяют путем составления электронного баланса либо методом полуреакций. Подробнее остановимся на первом способе расставления коэффициентов в ОВР.

Степени окисления

Прежде чем определять окислитель в реакции, нужно расставить степени окисления у всех элементов в веществах, участвующих в превращении. Она представляет собой заряд атома элемента, вычисленный по определенным правилам. В сложных веществах сумма всех положительных и отрицательных степеней окисления должна быть равна нулю. Для металлов главных подгрупп она соответствует валентности и имеет положительную величину.

Для неметаллов, которые в формуле располагаются в конце, степень определяется путем вычитания из восьми номера группы и имеет отрицательное значение.

У простых веществ она равна нулю, так как не наблюдается процесса принятия или отдачи электронов.

У сложных соединений, состоящих из нескольких химических элементов, для определения степеней окисления используют математические вычисления.

Итак, окислитель - это атом, который в процессе взаимодействия понижает свою степень окисления, а восстановитель, напротив, повышает ее значение.

Примеры ОВР

Основной особенностью заданий, связанных с расстановкой коэффициентов в окислительно-восстановительных реакциях, является определение пропущенных веществ и составление их формул. Окислитель - это элемент, который будет принимать электроны, но помимо него в реакции должен участвовать и восстановитель, отдающий их.

Приведем обобщенный алгоритм, по которому можно выполнять задания, предлагаемые выпускникам старшей школы на едином государственном экзамене. Рассмотрим несколько конкретных примеров, чтобы понять, что окислитель - это не только элемент в сложном веществе, но и простое вещество.

Сначала необходимо расставить у каждого элемента значения степеней окисления, используя определенные правила.

Далее нужно проанализировать элементы, которые не участвовали в образовании веществ, и составить для них формулы. После того как все пропуски будут ликвидированы, можно переходить к процессу составления электронного баланса между окислителем и восстановителем. Полученные коэффициенты ставят в уравнение, при необходимости добавляя их перед теми веществами, которые не вошли в баланс.

Например, пользуясь методом электронного баланса, необходимо завершить предложенное уравнение, расставить перед формулами необходимые коэффициенты.

H 2 O 2 + H 2 SO 4 +KMnO 4 = MnSO 4 + O 2 + …+…

Для начала у каждого определим значения степеней окисления, получим

H 2+ O 2 - + H 2+ S +6 O 4 -2 +K + Mn +7 O 4 -2 = Mn +2 S +6 O 4 -2 + O 2 0 + …+…

В предложенной схеме они меняются у кислорода, а также у марганца в перманганате калия. Таким образом, восстановитель и окислитель нами найдены. В правой части отсутствует вещество, в котором бы был калий, поэтому вместо пропусков составим формулу его сульфата.

Последним действием в данном задании будет расстановка коэффициентов.

5H 2 O 2 + 3H 2 SO 4 +2KMnO 4 = 2Mn SO 4 + 5O 2 + 8H 2 O + K 2 SO 4

В качестве сильных окислителей можно рассмотреть кислоты, перманганат калия, перекись водорода. Все металлы проявляют восстановительные свойства, превращаясь в реакции в катионы, имеющие положительный заряд.

Заключение

Процессы, касающиеся принятия и отдачи отрицательных электронов, происходят не только в неорганической химии. Обмен веществ, который осуществляется в живых организмах, является наглядным вариантом протекания окислительно-восстановительных реакций в органической химии. Это подтверждает значимость рассмотренных процессов, их актуальность для живой и неживой природы.

Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается . Окислители при этом восстанавливаются .

Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается . Восстановители при этом окисляются .

Химические вещества можно разделить на типичные окислители , типичные восстановители , и вещества, которые могут проявлять и окислительные, и восстановительные свойства . Некоторые вещества практически не проявляют окислительно-восстановительную активность.

К типичным окислителям относят:

  • простые вещества-неметаллы с наиболее сильными окислительными свойствами (фтор F 2 , кислород O 2 , хлор Cl 2);
  • ионы металлов или неметаллов с высокими положительными (как правило, высшими) степенями окисления : кислоты (HN +5 O 3 , HCl +7 O 4), соли (KN +5 O 3 , KMn +7 O 4), оксиды (S +6 O 3 , Cr +6 O 3)
  • соединения, содержащие некоторые катионы металлов , имеющих высокие степени окисления : Pb 4+ , Fe 3+ , Au 3+ и др.

Типичные восстановители – это, как правило:

  • простые вещества-металлы (восстановительные способности металлов определяются рядом электрохимической активности);
  • сложные вещества, в составе которых есть атомы или ионы неметаллов с отрицательной (как правило, низшей) степенью окисления : бинарные водородные соединения (H 2 S, HBr), соли бескислородных кислот (K 2 S, NaI);
  • некоторые соединения, содержащие катионы с минимальной положительной степенью окисления (Sn 2+ , Fe 2+ , Cr 2+), которые, отдавая электроны, могут повышать свою степень окисления ;
  • соединения, содержащие сложные ионы, состоящие из неметаллов с промежуточной положительной степенью окисления (S +4 O 3) 2– , (НР +3 O 3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления .

Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства .

Типичные окислители и восстановители приведены в таблице.

В лабораторной практике наиболее часто используются следующие окислители :

    перманганат калия (KMnO 4);

    дихромат калия (K 2 Cr 2 O 7);

    азотная кислота (HNO 3);

    концентрированная серная кислота (H 2 SO 4);

    пероксид водорода (H 2 O 2);

    оксиды марганца (IV) и свинца (IV) (MnO 2 , PbO 2);

    расплавленный нитрат калия (KNO 3) и расплавы некоторых других нитратов.

К восстановителям , которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al), цинк (Zn) и другие активные металлы;
  • водород (Н 2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na 2 S) и сероводород (H 2 S);
  • сульфит натрия (Na 2 SO 3);
  • хлорид олова (SnCl 2).

Классификация окислительно-восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования .

Межмолекулярные реакции протекают с изменением степени окисления разных элементов из разных реагентов . При этом образуются разные продукты окисления и восстановления .

2Al 0 + Fe +3 2 O 3 → Al +3 2 O 3 + 2Fe 0 ,

C 0 + 4HN +5 O 3(конц) = C +4 O 2 + 4N +4 O 2 + 2H 2 O.

Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента переходят в разные продукты, например :

(N -3 H 4) 2 Cr +6 2 O 7 → N 2 0 + Cr +3 2 O 3 + 4 H 2 O,

2 NaN +5 O -2 3 → 2 NaN +3 O 2 + O 0 2 .

Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один и тот же элемент одного реагента, который при этом переходит в разные продукты :

3Br 2 + 6 KOH → 5KBr + KBrO 3 + 3 H 2 O,

Репропорционирование (конпропорционирование, контрдиспропорционирование ) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент , которыйиз разных реагентов переходит в один продукт . Реакция, обратная диспропорционированию.

2H 2 S -2 + S +4 O 2 = 3S + 2H 2 O

Основные правила составления окислительно-восстановительных реакций

Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:

Окисление — это процесс отдачи электронов восстановителем.

Восстановление — это процесс присоединения электронов окислителем.

Окислитель восстанавливается , а восстановитель окисляется .

В окислительно-восстановительных реакциях соблюдается электронный баланс : количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.

Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.

Рассмотрим подробно метод электронного баланса .

«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:

K + 2 S -2 + 2K + Mn +7 O -2 4 = 2K + 2 Mn +6 O -2 4 + S 0

Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.

Степень окисления меняют атомы марганца и серы:

S -2 -2e = S 0

Mn +7 + 1e = Mn +6

Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс . Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!

Схема составления уравнений ОВР методом электронного баланса:

Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.

Общие закономерности протекания окислительно-восстановительных реакций

Продукты окислительно-восстановительных реакций зачастую зависят от условий проведения процесса . Рассмотрим основные факторы, влияющие на протекание окислительно-восстановительных реакций .

Самый очевидный фактор, определяющий — среда раствора реакции — . Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:

  • окислительная активность усиливается в более кислой среде и окислитель восстанавливается глубже (например, перманганат калия, KMnO 4 , где Mn +7 в кислой среде восстанавливается до Mn +2 , а в щелочной — до Mn +6);
  • окислительная активность усиливается в более щелочной среде , и окислитель восстанавливается глубже (например, нитрат калия KNO 3 , где N +5 при взаимодействии с восстановителем в щелочной среде восстанавливается до N -3);
  • либо окислитель практически не подвержен изменениям среды.

Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!

Обратите внимание! Е сли среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.

Также на направление протекания ОВР влияет природа реагирующих веществ. Например , при взаимодействии азотной кислоты HNO 3 с восстановителями наблюдается закономерность — чем больше активность восстановителя, тем больше восстановливается азот N +5 .

При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.

В гетерогенных реакциях на состав продуктов зачастую влияет степень измельчения твердого вещества . Например, порошковый цинк с азотной кислотой образует одни продукты, а гранулированный — совершенно другие. Чем больше степень измельчения реагента, тем больше его активность, как правило.

Рассмотрим наиболее типичные лабораторные окислители.

Основные схемы окислительно-восстановительных реакций

Схема восстановления перманганатов

В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.

Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.

В кислой среде восстановление происходит более глубоко, до Mn 2+ . Оксид марганца в степени окисления +2 проявляет основные свойства, поэтому в кислой среде образуется соль. Соли марганца +2 бесцветны . В нейтральном растворе марганец восстанавливается до степени окисления +4 , с образованием амфотерного оксида MnO 2 коричневого осадка, нерастворимого в кислотах и щелочах. В щелочной среде марганец восстанавливается минимально — до ближайшей степени окисления +6 . Соединения марганца +6 проявляют кислотные свойства, в щелочной среде образуют соли — манганаты . Манганаты придают раствору зеленую окраску .

Рассмотрим взаимодействие перманганата калия KMnO 4 с сульфидом калия в кислой, нейтральной и щелочной средах. В этих реакциях продуктом окисления сульфид-иона является S 0 .

5 K 2 S + 2 KMnO 4 + 8 H 2 SO 4 = 5 S + 2 MnSO 4 + 6 K 2 SO 4 + 8 H 2 O,

3 K 2 S + 2 KMnO 4 + 4 H 2 O = 2 MnO 2 ↓ + 3 S↓ + 8 KOH,

Распространенной ошибкой в этой реакции является указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.

K 2 S + 2 KMnO 4 –(KOH)= 2 K 2 MnO 4 + S↓

При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.

Перманганаты окисляют:

  • неметаллы с отрицательной степенью окисления до простых веществ (со степенью окисления 0), исключения фосфор, мышьяк — до +5 ;
  • неметаллы с промежуточной степенью окисления до высшей степени окисления;
  • активные металлы стабильной положительной степенью окисления металла.

KMnO 4 + неМе (низшая с.о.) = неМе 0 + другие продукты

KMnO 4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты

KMnO 4 + Ме 0 = Ме (стабильная с.о.) + др. продукты

KMnO 4 + P -3 , As -3 = P +5 , As +5 + др. продукты

Схема восстановления хроматов/бихроматов

Особенностью хрома с валентностью VI является то, что он образует 2 типа солей в водных растворах: хроматы и бихроматы, в зависимости от среды раствора. Хроматы активных металлов (например, K 2 CrO 4) — это соли, которые устойчивы в щелочной среде. Дихроматы (бихроматы) активных металлов (например, K 2 Cr 2 O 7) — соли, устойчивые в кислой среде .

Восстанавливаются соединения хрома (VI) до соединений хрома (III) . Соединения хрома Cr +3 — амфотерные, и в зависимости от среды раствора они существуют в растворе в различных формах: в кислой среде в виде солей (амфотерные соединения при взаимодействии с кислотами образуют соли), в нейтральной среде — нерастворимый амфотерный гидроксид хрома (III) Cr(OH) 3 , и в щелочной среде соединения хрома (III) образуют комплексную соль, например, гексагидроксохромат (III) калия K 3 .

Соединения хрома VI окисляют:

  • неметаллы в отрицательной степени окисления до простых веществ (со степенью окисления 0), исключения фосфор, мышьяк – до +5 ;
  • неметаллы в промежуточной степени окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

Хромат/бихромат + неМе (отрицательная с.о.) = неМе 0 + другие продукты

Хромат/бихромат + неМе (промежуточная положительная с.о.) = неМе(высшая с.о.) + др. продукты

Хромат/бихромат + Ме 0 = Ме (стабильная с.о.) + др. продукты

Хромат/бихромат + P, As (отрицательная с.о.) = P, As +5 + другие продукты

Разложение нитратов

Соли-нитраты содержат азот в степени окисления +5 — сильный окислитель . Такой азот может окислять кислород (О -2). Это происходит при нагревании нитратов. При этом в большинстве случаев кислород окисляется до степени окисления 0, т.е. до молекулярного кислорода O 2 .

В зависимости от типа металла, образующего соль, при термическом (температурном) разложении нитратов образуются различные продукты: если металл активный (в ряду электрохимической активности находятся до магния ), то азот восстанавливается до степени окисления +3, и при разложении образуется соли-нитриты и молекулярный кислород .

Например :

2NaNO 3 → 2NaNO 2 + O 2 .

Активные металлы в природе встречаются в виде солей (KCl, NaCl).

Если металл в ряду электрохимической активности находится правее магния и левее меди (включая магний и медь) , то при разложении образуется оксид металла в устойчивой степени окисления, оксид азота (IV) (бурый газ) и кислород . Оксид металла образует также при разложении нитрат лития .

Например , разложение нитрата цинка :

2Zn(NO 3) 2 → 2ZnО + 4NO 2 + O 2 .

Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe 2 O 3 , Al 2 O 3 и др.).

Ионы металлов , расположенных в ряду электрохимической активности правее меди являются сильными окислителями. При разложении нитратов они, как и N +5 , участвуют в окислении кислорода, и восстанавливаются до простых веществ, т.е. образуется металл и выделяются газы — оксид азота (IV) и кислород .

Например , разложение нитрата серебра :

2AgNO 3 → 2Ag + 2NO 2 + O 2 .

Неактивные металлы в природе встречаются в виде простых веществ.

Некоторые исключения!

Разложение нитрата аммония :

В молекуле нитрата аммония есть и окислитель, и восстановитель: азот в степени окисления -3 проявляет только восстановительные свойства, азот в степени окисления +5 — только окислительные.

При нагревании нитрат аммония разлагается . При температуре до 270 о С образуется оксид азота (I) («веселящий газ») и вода:

NH 4 NO 3 → N 2 O + 2H 2 O

Это пример реакции контрдиспропорционирования .

Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.

При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород :

2NH 4 NO 3 → 2N 2 + O 2 + 4H 2 O

При разложении нитрита аммония NH 4 NO 2 также происходит контрдиспропорционирование.

Результирующая степень окисления азота также равна среднему арифметическому степеней окисления исходных атомов азота — окислителя N +3 и восстановителя N -3

NH 4 NO 2 → N 2 + 2H 2 O

Термическое разложение нитрата марганца (II) сопровождается окислением металла:

Mn(NO 3) 2 = MnO 2 + 2NO 2

Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:

2Fe(NO 3) 2 → 2FeO + 4NO 2 + O 2 при 60°C
4Fe(NO 3) 2 → 2Fe 2 O 3 + 8NO 2 + O 2 при >60°C

Нитрат никеля (II) разлагается до нитрита при нагревании.

Окислительные свойства азотной кислоты

Азотная кислота HNO 3 при взаимодействии с металлами практически никогда не образует водород , в отличие от большинства минеральных кислот.

Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.

Азотная кислота + металл = соль металла + продукт восстановления азота + H 2 O

Азотная кислота при восстановлении может переходить в оксид азота (IV) NO 2 (N +4); оксид азота (II) NO (N +2); оксид азота (I) N 2 O («веселящий газ»); молекулярный азот N 2 ; нитрат аммония NH 4 NO 3 . Как правило, образуется смесь продуктов с преобладанием одного из них. Азот восстанавливается при этом до степеней окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты . При этом работает правило: чем меньше концентрация кислоты и выше активность металла, тем больше электронов получает азот, и тем более восстановленные продукты образуются .

Некоторые закономерности позволят верно определять основной продукт восстановления металлами азотной кислоты в реакции:

  • при действии очень разбавленной азотной кислоты на металлы образуется, как правило, нитрат аммония NH 4 NO 3 ;

Например , взаимодействие цинка с очень разбавленной азотной кислотой:

4Zn + 10HNO 3 = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

  • концентрированная азотная кислота на холоде пассивирует некоторые металлы — хром Cr, алюминий Al и железо Fe . При нагревании или разбавлении раствора реакция идет;

пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой

  • азотная кислота не реагирует с металлами платиновой подгруппы золотом Au, платиной Pt, и палладием Pd;
  • при взаимодействии концентрированной кислоты с неактивными металлами и металлами средней активности азотная кислота восстанавливается до оксида азота (IV) NO 2 ;

Например , окисление меди концентрированной азотной кислотой:

Cu+ 4HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

  • при взаимодействии концентрированной азотной кислоты с активными металлами образуется оксид азота (I) N 2 O ;

Например , окисление натрия концентрированной азотной кислотой :

Na+ 10HNO 3 = 8NaNO 3 + N 2 O + 5H 2 O

  • при взаимодействии разбавленной азотной кислоты с неактивными металлами (в ряду активности правее водорода) кислота восстанавливается до оксида азота (II) NO ;
  • при взаимодействии разбавленной азотной кислоты с металлами средней активности образуется либо оксид азота (II) NO, либо оксид азота N 2 O, либо молекулярный азот N 2 — в зависимости от дополнительных факторов (активность металла, степень измельчения металла, степень разбавления кислоты, температура).
  • при взаимодействии разбавленной азотной кислоты с активными металлами образуется молекулярный азот N 2 .

Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:

NO 2 ; NO; N 2 O; N 2 ; NH 4 NO 3

Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.

Например , взаимодействуют концентрированная кислота и неактивный металл медь Cu. Следовательно, смещаемся в крайнее левое положение, образуется оксид азота (IV), нитрат меди и вода.

Взаимодействие металлов с серной кислотой

Разбавленная серная кислота взаимодействует с металлами, как обычная минеральная кислота. Т.е. взаимодействует с металлами, которые расположены в ряду электрохимических напряжений до водорода . Окислителем здесь выступают ионы H + , которые восстанавливаются до молекулярного водорода H 2 . При этом металлы окисляются, как правило, до минимальной степени окисления.

Например :

Fe + H 2 SO 4(разб) = FeSO 4 + H 2

взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.

H 2 SO 4 (конц) + металл = соль металла + продукт восстановления серы (SO 2 , S, H 2 S) + вода

При взаимодействии концентрированной серной кислоты с металлами образуются соль металла (в устойчивой степени окисления), вода и продукт восстановления серы — сернистый газ S +4 O 2 , молекулярная сера S либо сероводород H 2 S -2 , в зависимости от степени концентрации, активности металла, степени его измельчение, температуры и т.д. При взаимодействии концентрированной серной кислоты с металлами молекулярный водород не образуется!

Основные принципы взаимодействия концентрированной серной кислоты с металлами:

1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;

2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием ;

3. С неактивными металлами концентированная серная кислота восстанавливается до оксида серы (IV).

Например , медь окисляется концентрированной серной кислотой :

Cu 0 + 2H 2 S +6 O 4(конц) = Cu +2 SO 4 + S +4 O 2 + 2H 2 O

4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H 2 S 2- (в зависимости от температуры, степени измельчения и активности металла).

Например , взаимодействие концентрированной серной кислоты с цинком :

8Na 0 + 5H 2 S +6 O 4(конц) → 4Na 2 + SO 4 + H 2 S — 2 + 4H 2 O

Пероксид водорода

Пероксид водорода H 2 O 2 содержит кислород в степени окисления -1. Такой кислород может и повышать, и понижать степень окисления. Таким образом, пероксид водорода проявляет и окислительные, и восстановительные свойства.

При взаимодействии с восстановителями пероксид водорода проявляет свойства окислителя, и восстанавливается до степени окисления -2. Как правило, продуктом восстановления пероксида водорода является вода или гидроксид-ион, в зависимости от условий проведения реакции. Например:

S +4 O 2 + H 2 O 2 -1 → H 2 S +6 O 4 -2

При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O 2 . Например :

2KMn +7 O 4 + 5H 2 O 2 -1 + 3H 2 SO 4 → 5O 2 0 + 2Mn +2 SO 4 + K 2 SO 4 + 8H 2 O