Положение элементов металлов в периодической системе менделеева. Л.п.иванова, учитель химии новинской средней школы (астраханская обл.). Химические свойства железа

04.07.2020

1. Какие особенности строения атомов металлов определяют их восстановительные свойства?

Восстановительные свойства металлов определяются способностью отдавать электроны внешнего слоя. Чем легче атом отдает электроны внешнего слоя, тем более сильным восстановителем он является.

2. Назовите химический элемент, образующий простое вещество — самый активный металл. Обоснуйте свой выбор.

Самый активный металл — франций (Fr).

Франций легче всего отдает электрон внешнего слоя. Он обладает самым большим атомным радиусом, поэтому энергия взаимодействия ядра атома с внешней электронной оболочкой мала.

3. Как согласуется утверждение о том, что металлы проявляют только восстановительные свойства и, следовательно, при этом окисляются, с процессом, который можно отразить с помощью уравнения: Назовите этот процесс. В каких формах существования химического элемента выступает медь? Для какой формы существования химических элементов справедливо указанное выше утверждение?

Металлы проявляют восстановительные свойства в нулевой степени окисления, т.е. сам металл может быть только восстановителем. Приведенный процесс— пример окисления Cu2+ до Cu0. В данном примере медь выступает в виде катиона.

Бо льшая часть известных химических элементов образует простые вещества металлы.

К металлам относятся все элементы побочных (Б) подгрупп, а также элементы главных подгрупп, расположенные ниже диагонали «бериллий - астат» (Рис. 1). Кроме того, химические элементы металлы образуют группы лантаноидов и актиноидов.

Рис. 1. Расположение металлов среди элементов подгрупп А (выделены синим)

По сравнению с атомами неметаллов, атомы металлов имеют бо льшие размеры и меньшее число внешних электронов, обычно оно равно 1-2. Следовательно, внешние электроны атомов металлов слабо связаны с ядром, металлы их легко отдают, проявляя в химических реакциях восстановительные свойства.

Рассмотрим закономерности изменения некоторых свойств металлов в группах и периодах.

В периодах с увеличением заряда ядра радиус атомов уменьшается. Ядра атомов все сильнее притягивают внешние электроны, поэтому возрастает электроотрицательность атомов, металлические свойства уменьшаются. Рис. 2.

Рис. 2. Изменение металлических свойств в периодах

В главных подгруппах сверху вниз в атомах металлов возрастает число электронных слоев, следовательно, увеличивается радиус атомов. Тогда внешние электроны будут слабее притягиваться к ядру, поэтому наблюдается уменьшение электроотрицательности атомов и увеличение металлических свойств. Рис. 3.

Рис. 3. Изменение металлических свойств в подгруппах

Перечисленные закономерности характерны и для элементов побочных подгрупп, за редким исключением.

Атомы элементов металлов склонны к отдаче электронов. В химических реакциях металлы проявляют себя только как восстановители, они отдают электроны и повышают свою степень окисления.

Принимать электроны от атомов металлов могут атомы, составляющие простые вещества неметаллы, а также атомы, входящие в состав сложных веществ, которые способны понизить свою степень окисления. Например:

2Na 0 + S 0 = Na +1 2 S -2

Zn 0 + 2H +1 Cl = Zn +2 Cl 2 + H 0 2

Не все металлы обладают одинаковой химической активностью. Некоторые металлы при обычных условиях практически не вступают в химические реакции, их называют благородными металлами. К благородным металлам относятся: золото, серебро, платина, осмий, иридий, палладий, рутений, родий.

Благородные металлы очень мало распространены в природе и встречаются почти всегда в самородном состоянии (Рис. 4). Несмотря на высокую устойчивость к коррозии-окислению, эти металлы все же образуют оксиды и другие химические соединения, например, всем известны соли хлориды и нитраты серебра.

Рис. 4. Самородок золота

Подведение итога урока

На этом уроке вы рассмотрели положение химических элементов металлов в Периодической системе, а также особенности строения атомов этих элементов, определяющие свойства простых и сложных веществ. Вы узнали, почему химических элементов металлов значительно больше, чем неметаллов.

Список литературы

  1. Оржековский П.А. Химия: 9-й класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013. (§28)
  2. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§34)
  3. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с. 86-87)
  4. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.
  1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) ().
  2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

  1. с. 195-196 №№ 7, А1-А4 из учебника П.А. Оржековского «Химия: 9-й класс» / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013.
  2. Какими свойствами (окислительными или восстановительными) может обладать ион Fe 3+ ? Ответ проиллюстрируйте уравнениями реакций.
  3. Сравните радиус атомов, электроотрицательность и восстановительные свойства натрия и магния.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Положение металлов в Периодической системе Д.И. Менделеева. Особенности строения атомов, свойства.

Цель урока: 1. на основе положения металлов в ПСХЭ прийти к пониманию особенностей строения их атомов и кристаллов (металлической химической связи и кристаллической металлической решетки). 2.Обобщить и расширить знания о физических свойствах металлов и их классификаций. 3. Развивать умение анализировать, делать выводы исходя из положения металлов в периодической системе химических элементов.

МЕДЬ Иду на мелкую монету, В колоколах люблю звенеть, Мне ставят памятник за это И знают: имя мое-….

ЖЕЛЕЗО Пахать и строить - все он может, если ему уголек в том поможет…

Металлы – это группа веществ с общими свойствами.

Металлами являются элементы I – III групп главных подгрупп, и IV-VIII групп побочных подгрупп I группа II группа III группа IV группа V группа VI группа VII группа VIII группа Na Mg Al Ti V Cr Mn Fe

Из 109 элементов ПСХЭ 85 являются металлами: выделены голубым, зелёным и розовым цветом (кроме H и He)

Положение элемента в ПС отражает строение его атомов ПОЛОЖЕНИЕ ЭЛЕМЕНТА В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ СТРОЕНИЕ ЕГО АТОМОВ Порядковый номер элемента в периодической системе Заряд ядра атома Общее число электронов Номер группы Число электронов на внешнем энергетическом уровне. Высшая валентность элемента, степень окисления Номер периода Число энергетических уровней. Число подуровней на внешнем энергетическом уровне

Модель атома натрия

Электронное строение атома натрия

Задание 2. Составьте схему электронного строения атома алюминия и кальция в тетради самостоятельно по примеру с атомом натрия.

Вывод: 1. Металлы – элементы, имеющие на внешнем энергетическом уровне 1-3 электрона, реже 4-6. 2. Металлы – это химические элементы атомы которых отдают электроны внешнего (а иногда предвнешнего) электронного слоя превращаясь в положительные ионы. Металлы – восстановители. Это обусловлено небольшим числом электронов внешнего слоя, большим радиусом атомов, вследствие чего эти электроны слабо удерживаются с ядром.

Металлическая химическая связь характеризуется: - делокализацией связи, т.к. сравнительно небольшое количество электронов одновременно связывают множество ядер; - валентные электроны свободно перемещаются по всему куску металла, который в целом электронейтрален; - металлическая связь не обладает направленностью и насыщенностью.

Кристаллические решетки металлов

Видеоинформация о кристаллах металлов

Свойства металлов определяются строением их атомов. Свойство металла Характеристика свойства твердость Все металлы кроме ртути, при обычных условиях твердые вещества. Самые мягкие – натрий, калий. Их можно резать ножом; самый твердый хром – царапает стекло. плотность Металлы делятся на лёгкие (плотность 5г/см) и тяжелые (плотность больше 5г/см). плавкость Металлы делятся на легкоплавкие и тугоплавкие электропроводность, теплопроводность Хаотически движущиеся электроны под действием электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток. металлический блеск Электроны, заполняющие межатомное пространство отражают световые лучи, а не пропускают как стекло пластичность. Механическое воздействие на кристалл с металлической решеткой вызывает только смещение слоев атомов и не сопровождается разрывом связи, и поэтому металл характеризуется высокой пластичностью.

Проверьте усвоение знаний на уроке тестированием 1) Электронная формула кальция. А) 1S 2 2S 2 2Р 6 3S 1 Б) 1S 2 2S 2 2 Р 6 3 S 2 В) 1S 2 2S 2 2 Р 6 3 S 2 3S 6 4S 1 Г) 1S 2 2S 2 2 Р 6 3 S 2 3 Р 6 4 S 2

Задания теста 2 и 3 2) Электронную формулу 1S 2 2S 2 2Р 6 3S 2 3Р 6 4S 2 имеет атом: а) Nа б) Са в) Сu г) Zn 3) Электропроводность, металлический блеск, пластичность, плотность металлов определяются: а) массой атомов б) температурой плавления металлов в) строением атомов металлов г) наличием неспаренных электронов

Задания теста 4 и 5 4) Металлы при взаимодействии с неметаллами проявляют свойства а) окислительные; б) восстановительные; в) и окислительные, и восстановительные; г) не участвуют в окислительно-восстановительных реакциях; 5) В периодической системе типичные металлы расположены в: а) верхней части; б) нижней части; в) правом верхнем углу; г) левом нижнем углу;

Правильные ответы Номер задания Вариант правильного ответа 1 Г 2 Б 3 В 4 Б 5 Г

Предварительный просмотр:

Цель и задачи урока:

  1. На основе положения металлов в ПСХЭ подвести учащихся к пониманию особенностей строения их атомов и кристаллов (металлической химической связи и кристаллической металлической решетки), изучить общие физические свойства металлов. Повторить и обобщить знания о химической связи и металлической кристаллической решетке.
  2. Развивать умение анализировать, делать выводы о строении атомов исходя из положения металлов в ПСХЭ.
  3. Развивать умение владеть химической терминологией, чётко формулировать и высказывать свои мысли.
  4. Воспитывать самостоятельность мышления в ходе учебной деятельности.
  5. Формировать интерес к будущей профессии.

Форма урока:

комбинированный урок с применением презентации

Методы и приёмы:

Рассказ, беседа, демонстрация видео типов кристаллических решеток металлов, тест, составление схем электронного строения атомов, демонстрация коллекции образцов металлов и сплавов.

Оборудование:

  1. Таблица «Периодическая система химических элементов Д.И. Менделеева»;
  2. Презентация урока на электронном носителе.
  3. Коллекция образцов металлов и сплавов.
  4. Проектор.
  5. Карточки с таблицей «Характеристика строения атома по положению в ПСХЭ»

ХОД УРОКА

I. Организационный момент урока .

II. Постановка и оглашение темы урока, его целей и задач.

Слайд 1-2

III. Изучение нового материала.

Учитель: Человек использовал металлы с древних времён. Кратко об истории использования металлов.

Сообщение 1 учащегося. Слайд 3

В начале был век медный .

К концу каменного века человек открыл возможность использования металлов для изготовления орудий труда. Первым таким металлом была медь.

Период распространения медных орудий называют энеолитом или халколитом , что в переводе с греческого означает «медь». Медь обрабатывалась с помощью каменных орудий методом холодной ковки. Самородки меди превращались в изделия под тяжелыми ударами молота. В начале медного века из меди делали лишь мягкие орудия, украшения, предметы домашней утвари. Именно с открытием меди и других металлов стала зарождаться профессия кузнеца.

Позже появилось литьё, а потом человек стал добавлять к меди олово или сурьму, делать бронзу, более долговечную, прочную, легкоплавкую.

Сообщение 2 учащегося. Слайд 3

Бронза – сплав меди и олова. Хронологические границы бронзового века датируются в начале 3-го тысячелетия до н.э. до начала 1-го тысячелетия до н.э.

Сообщение 3 учащегося. Слайд 4

Третий и последний период первобытной эпохи характеризуется распространением железной металлургии и железных орудий и знаменует собой железный век. В современном значении этот термин был введен в употребление в середине IХ века датским археологом К. Ю. Томсоном и вскоре распространился в литературе наряду с терминами «каменный век» и « бронзовый век».

В отличие от других металлов железо, кроме метеоритного, почти не встречается в чистом виде. Ученые предполагают, что первое железо, попавшее в руки человека, было метеоритного происхождения, и не зря железо именуется « небесным камнем». Самый крупный метеорит нашли в Африке, он весил около шестидесяти тонн. А во льдах Гренландии нашли железный метеорит весом тридцать три тонны.

И настоящее время продолжается железный век. Ведь в настоящее время железные сплавы составляют почти 90 % всего металлов и металлических сплавов.

Учитель.

Золото и серебро – благородные металлы в настоящее время служат для изготовления ювелирных украшений, а также деталей в электронике, авиакосмической промышленности, в судостроении. Где в судоходстве могут применяться эти металлы? Исключительное значение металлов для развития общества обусловлено, конечно, их уникальными свойствами. Назовите эти свойства.

Продемонстрировать учащимся коллекцию образцов металлов.

Учащиеся называют такие свойства металлов как электропроводность и теплопроводность, характерный металлический блеск, пластичность, твердость (кроме ртути) и др.

Учитель задает учащимся ключевой вопрос: а чем же обусловлены эти свойства?

Ожидаемый ответ: свойства веществ обусловлены строением молекул и атомов этих веществ.

Слайд 5. Итак, металлы – группа веществ с общими свойствами.

Демонстрация презентации.

Учитель: Металлами являются элементы 1-3 групп главных подгрупп, и элементы 4-8 групп побочных подгрупп.

Слайд 6. Задание 1 . Самостоятельно, используя ПСХЭ, в тетради допишите представителей групп, являющиеся металлами.

VIII

Заслушивание ответов учащихся выборочно.

Учитель: металлами будут элементы, размещенные в левом нижнем углу ПСХЭ.

Учитель подчеркивает, что в ПСХЭ металлами будут все элементы, расположенные ниже диагонали В - Аt, даже те, у которых на внешнем слое 4 электрона (Gе, Sn, Рb), 5 электронов (Sb, Вi), 6 электронов (Ро), так как они отличаются большим радиусом.

Таким образом, из 109 элементов ПСХЭ 85 являются металлами. Слайд № 7

Учитель: положение элемента в ПСХЭ отражает строение атома элемента. С помощью таблиц, которые вы получили в начале урока, охарактеризуем строение атома натрия по его положению в ПСХЭ.
Демонстрация слайда 8.

Что представляет собой атом натрия? Посмотрите на приближенную модель атома натрия, в которой видны ядро и электроны, движущиеся по орбитам.

Демонстрация Слайда 9. Модель атома натрия.

Напомню вам, как составляется схема электронного строения атома элемента.

Демонстрация слайда 10. У вас должна получиться следующая схема электронного строения атома натрия.

Слайд 11 . Задание 2. Составьте схему электронного строения атома кальция и алюминия в тетради самостоятельно по примеру с атомом натрия.

Учитель проверяет работу в тетради.

Какой вывод можно сделать об электронном строении атомов металлов?

На внешнем энергетическом уровне 1-3 электрона. Мы помним, что вступая в химические соединения, атомы стремятся восстановить полную 8-электронный оболочку внешнего энергетического уровня. Для этого атомы металлов легко отдают 1-3 электрона с внешнего уровня, превращаясь в положительно-заряженные ионы. При этом проявляют восстановительные свойства.

Демонстрация слайда 12. Металлы – это химические элементы, атомы которых отдают электроны внешнего (а иногда предвнешнего) электронного слоя, превращаясь в положительные ионы. Металлы – восстановители. Это обусловлено небольшим числом электронов внешнего слоя, большим радиусом атомов, вследствие чего эти электроны слабо удерживаются с ядром.

Рассмотрим простые вещества – металлы.

Демонстрация слайда 13.

Сначала обобщим сведения о типе химической связи, образуемой атомами металлов и строении кристаллической решетки

  1. сравнительно небольшое количество электронов одновременно связывают множество ядер, связь делокализована;
  2. валентные электроны свободно перемещаются по всему куску металла, который в целом электронейтрален;
  3. металлическая связь не обладает направленностью и насыщенностью.

Демонстрация

Слайд 14 « Типы кристаллических решёток металлов »

Слайд 15 Видео кристаллической решетки металлов.

Учащиеся делают вывод, что в соответствие именно с таким строением металлы характеризуются общими физическими свойствами.

Учитель подчеркивает, что физические свойства металлов определяются именно их строением.

Слайд 16 Свойства металлов определяются строением их атомов

а) твердость – все металлы кроме ртути, при обычных условиях твердые вещества. Самые мягкие – натрий, калий. Их можно резать ножом; самый твердый хром – царапает стекло (демонстрация).

б) плотность - металлы делятся на лёгкие (5г/см) и тяжелые (больше 5г/см) (демонстрация).

в) плавкость - металлы делятся на легкоплавкие и тугоплавкие (демонстрация).

г) электропроводность, теплопроводность металлов обусловлена их строением. Хаотически движущиеся электроны под действием электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток.

При повышении температуры амплитуда движения атомов и ионов, находящихся в узлах кристаллической решетки резко возрастает, и это мешает движению электронов, и электропроводность металлов падает.

Следует отметить, что у некоторых неметаллов, при повышении температуры электропроводность возрастает, например, у графита, при этом с повышением температуры разрушаются некоторые ковалентные связи, и число свободно перемещающихся электронов возрастает.

д) металлический блеск – электроны, заполняющие межатомное пространство отражают световые лучи, а не пропускают, как стекло.

Поэтому все металлы в кристаллическом состоянии имеют металлический блеск. Для большинства металлов в равной степени рассеиваются все лучи видимой части спектра, поэтому они имеют серебристо – белый цвет. Только золото и медь в большой степени поглощают короткие волны и отражают длинные волны светового спектра, поэтому имеют желтый свет. Самые блестящие металлы – ртуть, серебро, палладий. В порошке все металлы, кроме АI и Мg, теряют блеск и имеют черный или темно-серый цвет.

е) пластичность . Механическое воздействие на кристалл с металлической решеткой вызывает только смещение слоев атомов и не сопровождается разрывом связи, и поэтому металл характеризуется высокой пластичностью.

IV. Закрепление изученного материала.

Учитель: мы рассмотрели строение и физические свойства металлов, их положение в периодической системе химических элементов Д.И. Менделеева. Теперь для закрепления предлагаем выполнить тест.

Слайды 15-16-17.

1) Электронная формула кальция.

  1. а) 1S 2 2S 2 2Р 6 3S 1
  2. б) 1S 2 2S 2 2Р 6 3S 2
  3. в) 1S 2 2S 2 2Р 6 3S 2 3S 6 4S 1
  4. г) 1S 2 2S 2 2Р 6 3S 2 3Р 6 4S 2

2) Электронную формулу 1S 2 2S 2 2Р 6 3S 2 3Р 6 4S 2 имеет атом:

  1. а) Nа
  2. б) Са
  3. в) Сu
  4. г) Zn

3) Электропроводность, металлический блеск, пластичность, плотность металлов определяются:

  1. а) массой металла
  2. б) температурой плавления металлов
  3. в) строением атомов металлов
  4. г) наличием неспареных электронов

4) Металлы при взаимодействии с неметаллами проявляют свойства

  1. а) окислительные;
  2. б) восстановительные;
  3. в) и окислительные, и восстановительные;
  4. г) не участвуют в окислительно-восстановительных реакциях;

5) В периодической системе типичные металлы расположены в:

  1. а) верхней части;
  2. VI. Домашнее задание.

    Строение атомов металлов, их физические свойства


    Главная > Документ

    Металлы в периодической системе. Строение атомов-металлов. Общая характеристика металлов.

    Положение металлов в периодической системе Если в таблице Д. И. Менделеева провести диагональ от бора к астату, то в главных подгруппах под диагональю окажутся атомы-металлы, а в побочных подгруппах все элементы ― металлы. Элементы, расположенные вблизи диагонали, обладают двойственными свойствами: в некоторых своих соединениях ведут себя как металлы; в некоторых ― как неметаллы.Строение атомов металлов В периодах и главных подгруппах действуют закономерности в изменении металлических свойств.Атомы многих металлов имеют 1, 2 или 3 валентных электрона, например:

    Na (+ 11): 1S 2 2S 2 2p 6 3S 1

    Са (+ 20): 1S 2 2S 2 2p 6 3S 2 3p 6 3d 0 4S 2

    Щелочные металлы (1 группа, главная подгруппа): ...nS 1 .Щелочно-земельные (2 группа, главная подгруппа): ...nS 2 .Свойства атомов–металлов находятся в периодической зависимости от их местоположения в таблице Д. И. Менделеева. В ГЛАВНОЙ ПОДГРУППЕ :

      не изменяется .

      Радиус атома увеличивается

      Электроотрицательность уменьшается .

      Восстановительные свойства усиливаются .

      Металлические свойства усиливаются .

    В ПЕРИОДЕ:
      Заряды ядер атомов увеличиваются .

      Радиусы атомов уменьшаются .

      Число электронов на внешнем слое увеличивается .

      Электроотрицательность увеличивается .

      Восстановительные свойства уменьшаются .

      Металлические свойства ослабевают .

    Строение кристаллов металлов Большинство твердых веществ существует в кристаллической форме: их частицы расположены в строгом порядке, образуя регулярную пространственную структуру ― кристаллическую решетку.Кристалл ― твердое тело, частицы которого (атомы, молекулы, ионы) расположены в определенном, периодически повторяющемся порядке (в узлах). При мысленном соединении узлов линиями образуется пространственный каркас ― кристаллическая решетка.Кристаллические структуры металлов в виде шаровых упаковок

    а ― медь; б ― магний; в ― α-модификация железа

    Атомы металлов стремятся отдать свои внешние электроны. В куске металла, слитке или металлическом изделии атомы металла отдают внешние электроны и посылают их в этот кусок, слиток или изделие, превращаясь при этом в ионы. «Оторвавшиеся» электроны перемещаются от одного иона к другому, временно снова соединяются с ними в атомы, снова отрываются, и этот процесс происходит непрерывно. Металлы имеют кристаллическую решетку, в узлах которой находятся атомы или ионы (+); между ними находятся свободные электроны (электронный газ). Схему связи в металле можно отобразить так:

    М 0 ↔ nē + М n+ ,

    атом ― ион

    где n ― число внешних электронов, участвующих в связи (у Na ― 1 ē , у Са ― 2 ē , у Al ― 3 ē ).Наблюдается этот тип связи в металлах ― простых веществах-металлах и в сплавах.Металлическая связь ― это связь между положительно заряженными ионами металлов и свободными электронами в кристаллической решетке металлов.Металлическая связь имеет некоторое сходство с ковалентной, но и некоторое отличие, поскольку металлическая связь основана на обобществлении электронов (сходство), в обобществлении этих электронов принимают участие все атомы (отличие). Именно поэтому кристаллы с металлический связью пластичны, электропроводны и имеют металлический блеск. Однако в парообразном состоянии атомы металлов связаны между собой ковалентной связью, пары металлов состоят из отдельных молекул (одноатомных и двухатомных).Общая характеристика металлов

    Способность атомов отдавать электроны (окисляться)

    ← Возрастает

    Взаимодействие с кислородом воздуха

    Быстро окисляются при обычной температуре

    Медленно окисляются при обычной температуре или при нагревании

    Не окисляются

    Взаимодействие с водой

    При обычной температуре выделяется Н 2 и образуется гидроксид

    При нагревании выделяется Н 2

    Н 2 из воды не вытесняют

    Взаимодействие с кислотами

    Вытесняют Н 2 из разбавленных кислот

    Не вытесняют Н 2 из разбавленных кислот

    Реагируют с конц. и разб. HNO 3 и с конц. H 2 SO 4 при нагревании

    С кислотами не реагируют

    Нахождение в природе

    Только в соединениях

    В соединениях и в свободном виде

    Главным образом в свободном виде

    Способы получения

    Электролиз расплавов

    Восстановлением углем, оксидом углерода(2), алюмотермия, или электролиз водных растворов солей

    Способность ионов присоединять электроны (восстанавливаться)

    Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au

    Возрастает →

    Электрохимический ряд напряжений металлов. Физические и химические свойства металлов

    Общие физические свойства металлов Общие физические свойства металлов определяются металлической связью и металлической кристаллической решеткой. Ковкость, пластичность Механическое воздействие на кристалл металла вызывает смещение слоев атомов. Так как электроны в металле перемещаются по всему кристаллу, то разрыва связей не происходит. Пластичность уменьшается в ряду Au, Ag, Cu, Sn, Pb, Zn, Fe . Золото, например, можно прокатывать в листы толщиной не более 0,001 мм, которые используют для позолоты различных предметов. Алюминиевая фольга появилась сравнительно недавно и раньше чай, шоколад поковали в фольгу из олова, которая так и называлась ― станиоль. Однако не обладают пластичностью Mn и Bi: это хрупкие металлы. Металлический блеск Металлический блеск, который в порошке теряют все металлы, кроме Al и Mg . Самые блестящие металлы ― это Hg (из нее изготовляли в средние века знаменитые «венецианские зеркала»), Ag (из него теперь с помощью реакции «серебряного зеркала» изготовляют современные зеркала). По цвету (условно) различают металлы черные и цветные. Среди последних выделим драгоценные ― Au, Ag, Pt. Золото ― металл ювелиров. Именно на его основе изготовляли замечательные пасхальные яйца Фаберже. Звон Металлы звенят, и это свойство используется для изготовления колокольчиков (вспомните Царь-колокол в Московском Кремле). Самые звонкие металлы ― это Au, Ag, Cи. Медь звенит густым, гудящим звоном ― малиновым звоном. Это образное выражение не в честь ягоды-малины, а в честь голландского города Малина, где выплавлялись первые церковные колокола. В России потом русские мастера стали лить колокола даже лучшего качества, а жители городов и поселков жертвовали золотые и серебряные украшения, чтобы отливаемый для храмов колокол звучал лучше. В некоторых русских ломбардах определяли подлинность принимаемых на комиссию золотых колец по звону золотого обручального кольца, подвешенного на женском волосе (слышен очень долгий и чистый высокий звук). При нормальных условиях все металлы, кроме ртути Hg, ― твердые вещества. Самый твердый из металлов ― хром Cr: он царапает стекло. Самые мягкие ― щелочные металлы, они режутся ножом. Щелочные металлы хранят с большими предосторожностями ― Na ― в керосине, а Li ― в вазелине из-за своей легкости, керосин ― в стеклянной баночке, баночка ― в асбестовой крошке, асбест ― в жестяной баночке. Электропроводность Хорошая электрическая проводимость металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов приобретают направленное движение от отрицательного полюса к положительному. С повышением температуры усиливаются колебания атомов (ионов), что затрудняет направленное движение электронов и тем самым приводит к уменьшению электрической проводимости. При низких же температурах колебательное движение, наоборот, сильно уменьшается и электрическая проводимость резко возрастает. Вблизи абсолютного нуля металлы проявляют сверхпроводимость. Наибольшей электрической проводимостью обладают Ag, Cu, Au, Al, Fe; худшие проводники ― Hg, Pb, W. Теплопроводность При обычных условиях теплопроводность металлов изменяется в основном в такой же последовательности, как их электрическая проводимость. Теплопроводность обусловливается высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры в массе металла. Наибольшая теплопроводность ― у серебра и меди, наименьшая ― у висмута и ртути. Плотность Плотность металлов различна. Она тем меньше, чем меньше атомная масса элемента-металла и чем больше радиус его атома. Самый легкий из металлов ― литий (плотность 0,53 г/см 3), самый тяжелый ― осмий (плотность 22,6 г/см 3). Металлы с плотностью меньше 5 г/см 3 называются легкими, остальные ― тяжелыми. Разнообразны температуры плавления и кипения металлов. Самый легкоплавкий металл ― ртуть (t кип = -38,9°С), цезий и галлий ― плавятся соответственно при 29 и 29,8°С. Вольфрам ― самый тугоплавкий металл (t кип = 3390°С). Понятие аллотропии металлов на примере олова Некоторые металлы имеют аллотропные модификации. Например, олово различают на:
      α-олово, или серое олово («оловянная чума» ― превращение обычного β-олова в α-олово при низких температурах стало причиной гибели экспедиции Р. Скотта к Южному полюсу, который потерял все горючее, так как оно хранилось в баках, запаянных оловом), устойчиво при t <14°С, серый порошок. β-олово, или белое олово (t = 14 ― 161°С) очень мягкий металл, но тверже свинца, поддается литью и пайке. Используется в сплавах, например, для изготовления белой жести (луженого железа).
    Электрохимический ряд напряжений металлов и два его правила Расположение атомов в ряд по их реакционной способности может быть представлен следующим образом: Li,K,Ca,Na,Mg,Al, Mn,Zn,Fe,Ni,Sn,Pb, Н 2 , Сu,Hg,Ag,Pt,Au . Положение элемента в электрохимическом ряду показывает, насколько легко он образует ионы в водном растворе, т. е. его реакционную способность. Реакционная способность элементов зависит от способности принимать или отдавать электроны, участвующие в образовании связи. 1-е правило ряда напряжений Если металл стоит в этом ряду до водорода, он способен вытеснять его из растворов кислот, если после водорода, то нет. Например, Zn, Mg, Al давали реакцию замещения с кислотами (они находятся в ряду напряжений до H ), а Cu нет (она после H ). 2-е правило ряда напряжений Если металл стоит в ряду напряжений до металла соли, то он способен вытеснить этот металл из раствора его соли. Например, CuSO 4 + Fe = FeSO 4 + Cu. В таких случаях положение металла до или после водорода может не иметь значения, важно, чтобы вступающий в реакцию металл предшествовал металлу, образующему соль: Cu + 2AgNO 3 = 2Ag + Cu(NO 3) 2 . Общие химические свойства металлов В химических реакциях металлы являются восстановителями (отдают электроны). Взаимодействие с простыми веществами .
      С галогенами металлы образуют соли ― галогениды:
    Mg + Cl 2 = MgCl 2 ; Zn + Br 2 = ZnBr 2 .
      С кислородом металлы образуют оксиды:
    4Na + O 2 = 2 Na 2 O; 2Cu + O 2 = 2CuO.
      С серой металлы образуют соли ― сульфиды:
    Fe + S = FeS.
      С водородом самые активные металлы образуют гидриды, например:
    Са + Н 2 = СаН 2 .
      с углеродом многие металлы образуют карбиды:
    Са + 2С = СаС 2 . Взаимодействие со сложными веществами
      Металлы, находящиеся в начале ряда напряжений (от лития до натрия), при обычных условиях вытесняют водород из воды и образуют щелочи, например:
    2Na + 2H 2 O = 2NaOH + H 2 .
      Металлы, расположенные в ряду напряжений до водорода, взаимодействуют с разбавленными кислотами (НCl, Н 2 SO 4 и др.), в результате чего образуются соли и выделяется водород, например:
    2Al + 6НCl = 2AlCl 3 + 3H 2 .
      Металлы взаимодействуют с растворами солей менее активных металлов, в результате чего образуется соль более активного металла, а мене активный металл выделяется в свободном виде, например:
    CuSO 4 + Fe = FeSO 4 + Cu.

    Металлы в природе.

    Нахождение металлов в природе. Большинство металлов встречается в природе в виде различных соединений: активные металлы находятся только в виде соединений; малоактивные металлы ― в виде соединений и в свободном виде; благородные металлы (Аg, Рt, Аu...) в свободном виде.Самородные металлы обычно содержатся в небольших количествах в виде зерен или вкраплений в горных породах. Изредка встречаются и довольно крупные куски металлов ― самородки. Многие металлы в природе существуют в связанном состоянии в виде химических природных соединений ― минералов . Очень часто это оксиды, например минералы железа: красный железняк Fe 2 O 3 , бурый железняк 2Fe 2 O 3 ∙ 3Н 2 О, магнитный железняк Fe 3 O 4 .Минералы входят в состав горных пород и руд. Рудами называют содержащие минералы природные образования, в которых металлы находятся в количествах, пригодных в технологическом и экономическом отношении для получения металлов в промышленности.По химическому составу минерала, входящего в руду, различают оксидные, сульфидные и другие руды.Обычно перед получением металлов из руды ее предварительно обогащают ― отделяют пустую горную породу, примеси, в результате образуется концентрат, служащий сырьем для металлургического производства.Способы получения металлов. Получение металлов из их соединений ― это задача металлургии. Любой металлургический процесс является процессом восстановления ионов металла с помощью различных восстановителей, в результате чего получаются металлы в свободном виде. В зависимости от способа проведения металлургического процесса различают пирометаллургию, гидрометаллургию и электрометаллургию.Пирометаллургия ― это получение металлов из их соединений при высоких температурах с помощью различных восстановителей: углерода, оксида углерода (II), водорода, металлов (алюминия, магния) и др.Примеры восстановления металлов
      углем:
    ZnO + C → Zn + CO 2 ;
      оксидом углерода:
    Fe 2 O 3 + 3CO → 2Fe + 3CO 2 ;
      водородом:
    WO 3 + 3H 2 → W + 3Н 2 О; CoO + H 2 → Co + Н 2 О;
      алюминием (алюмотермия):
    4Al + 3MnO 2 → 2Al 2 O 3 + 3Mn; Cr 2 O 3 + 2Al = 2Al 2 O 3 + 2Cr;
      магнием:
    TiCl 4 + 2Mg = Ti + 2MgCl 2 .Гидрометаллургия ― это получение металлов, которое состоит из двух процессов: 1) природное соединение металла растворяется в кислоте, в результате чего получается раствор соли металла; 2) из полученного раствора данный металл вытесняется более активным металлом. Например:
      2CuS + 3О 2 = 2CuO + 2SО 2 .
    CuO + H 2 SO 4 = CuSO 4 + H 2 O.
      CuSO 4 + Fe = FeSO 4 + Cu.
    Электрометаллургия ― это получение металлов при электролизе растворов или расплавов их соединений. Роль восстановителя в процессе электролиза играет электрический ток.

    Общая характеристика металлов IА-группы.

    К металлам главной подгруппы первой группы (IА-группы) относятся литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr). Эти металлы называются щелочными, так как они и их оксиды при взаимодействии с водой образуют щелочи.Щелочные металлы относятся к s-элементам. На внешнем электронном слое у атомов металлов один s-электрон (ns 1).Калий, натрий ― простые вещества

    Щелочные металлы в ампулах:
    а - цезий; б - рубидий; в - калий; г – натрийОсновные сведения об элементах IА группы

    Элемент Li литий Na натрий K калий Rb рубидий Cs цезий Fr франций
    Атомный номер 3 11 19 37 55 87
    Строение внешних электрон-ных оболочек атомов ns 1 np 0 ,где n = 2, 3, 4, 5, 6, 7, n ― номер периода
    Степень окисления +1 +1 +1 +1 +1 +1
    Основные природные соединения

    Li 2 O·Al 2 O 3 · 4SiO 2 (сподумен); LiAl(PO 4)F, LiAl(PO 4)OH (амблигонит)

    NaCl (поварен-ная соль); Na 2 SO 4 · 10H 2 O (глауберо-ва соль, мираби-лит); КCl·NaCl (сильви-нит)

    КCl (сильвин), КCl·NaCl (сильвинит); K (калиевый полевой шпат, ортоглаз); KCl·MgCl 2 ·6H 2 O (карналлит) ― содержится в растениях

    В качестве изоаморф-ной примеси в минералах калия ― сильвини-те и кар-наллите

    4Cs 2 O·4Al 2 O 3 ·18 SiO 2 · 2H 2 O (полу-цит); спутник минера-лов калия

    Продукт α-распада актиния
    Физические свойства Калий и натрий ― мягкие серебристые металлы (режутся ножом); ρ(К) = 860 кг/м 3 , Т пл (К) = 63,7°С, ρ(Na) = 970 кг/м 3 , Т пл (Na) = 97,8°С. Обладают высокой тепло- и электропроводностью, окрашивают пламя в характерные цвета: К ― в бледно-фиолетовый цвет, Na ― в желтый цвет.

    Металлы составляют большую часть химических элементов. Каждый период периодической системы (кроме 1-го) химических элементов начинается с металлов, причем с увеличением номера периода их становится все больше. Если во 2-м периоде металлов всего 2 (литий и бериллий), в 3-м - 3 (натрий, магний, алюминий), то уже в 4-м - 13, а в 7-м - 29.

    Атомы металлов имеют сходство в строении внешнего электронного слоя, который образован небольшим числом электронов (в основном не больше трех).

    Это утверждение можно проиллюстрировать на примерах Na, алюминия А1 и цинка Zn. Составляя схемы строения атомов, по желанию можно составлять электронные формулы и приводить примеры строения элементов больших периодов, например цинка.

    В связи с тем что электроны внешнего слоя атомов металлов слабо связаны с ядром, они могут быть «отданы» другим частицам, что и происходит при химических реакциях:

    Свойство атомов металлов отдавать электроны явтяется их характерным химическим свойством и свидетельствует о том, что металлы проявляют восстановительные свойства.

    При характеристике физических свойств металлов следует отметить их общие свойства: электрическую проводимость, теплопроводность, металлический блеск, пластичность, которые обусловлены единым видом химической связи - металлической, и металлической кристаллической решетки. Их особенностью является наличие свободноперемещаю-щихся обобществленных электронов между ион-атомами, находящимися в узлах кристаллической решетки.

    При характеристике химических свойств важно подтвердить вывод о том, что во всех реакциях металлы проявляют свойства восстановителей, и проиллюстрировать это записью уравнений реакции. Особое внимание следует обратить на взаимодействие металлов с кислотами и растворами солей, при этом необходимо обратиться к ряду напряжений металлов (ряд стандартных электродных потенциалов).

    Примеры взаимодействия металлов с простыми веществами (неметаллами):

    С солями (Zn в ряду напряжений стоит левее Сu): Zn + СuС12 = ZnCl2 + Сu!

    Таким образом, несмотря на большое многообразие металлов, все они обладают общими физическими и химическими свойствами, что объясняется сходством в строении атомов и строении простых веществ.