Промышленное получение аммиака. Получение аммиака в лабораторных условиях. аммиак цианамидный процесс десульфуратор

15.06.2021

Способы получения аммиака


Сырьем в производстве аммиака является азотоводородная смесь (ABC) стехиометрического состава N2: Н2 = 1: 3. Так как ресурсы атмосферного азота практически неисчерпаемы, сырьевая база аммиачного производства определяется вторым компонентом смеси - водородом, который может быть получен разделением обратного коксового газа, газификацией твердого топлива, конверсией природного газа (рис. 14.5).


Рис. 14.5. Сырьевые ресурсы производства аммиака


Структура сырьевой базы производства аммиака менялась и свыше 90% аммиака вырабатывается на основе природ - 14.3 приведена динамика изменения структуры основных видов сырья аммиачного производства.


Таблица 14.3. Изменение сырьевой базы производства аммиака


Азотоводородная смесь, независимо от метода ее получения, содержит примеси веществ, некоторые из которых являются каталитическими ядами, вызывающими как обратимое (кислород, оксиды углерода, пары воды), так и необратимое (различные соединения серы и фосфора) отравление катализатора.

С целью удаления этих веществ ABC подвергается предварительной очистке, методы и глубина которой зависят от их природы и содержания, то есть от способа производства ABC, Обычно, ABC, получаемая конверсией природного газа, содержит оксид углерода (IV), метан, аргон, следы кислорода и до 0,4% Об. оксида углерода (II).

Для очистки ABC в промышленности используются методы абсорбции жидкими поглотителями (мокрый метод) и адсорбции твердыми поглотителями (сухой метод). При этом, процесс очистки может производиться на различных стадиях производства:

Исходного газа перед подачей его на конверсию;

конвертированного газа для удаления из него оксида углерода (IV);

Азотоводородной смеси непосредственно перед синтезом аммиака (тонкая очистка ABC).

Первые два процесса рассматриваются при описании соответствующих производств.

Тонкая очистка ABC достигается хемосорбцией примесей жидкими реагентами и, окончательно, каталитическим гидрированием их или промыванием ABC жидким азотом.

Для удаления оксида углерода (IV) и сероводорода ABC промывают в башнях с насадкой щелочными реагентами, образующими с ними нестойкие термически соли: водным раствором этаноламина или горячим, активированным добавкой диэтаноламина, раствором карбоната калия. При этом протекают, соответственно, реакции:


H2S + CH2OH-CH2NH2+HS- - ?Н,

СО2 + К2СОз + Н2O? 2КНСО3 - ?Н.


Оксид углерода (II) удаляют из ABC промывкой ее медноаммиачным раствором ацетата меди:

СО + NH3 + +Ац? +Ац -?Н,


где: Ац = СН3СОО.

Применяемые для хемосорбции абсорбенты образуют с поглощаемыми из ABC нестойкие соединения. Поэтому, при нагревании их растворов и снижении давления происходит десорбция растворенных примесей, что позволяет легко регенерировать абсорбент, возвратить его в процесс и обеспечить цикличность операции абсорбции по схеме:

где: П - поглощаемая из ABC примесь, А - абсорбент, ПА - соединение примеси и абсорбента.

Более эффективным методом очистки ABC от оксида углерода (II) является применяемая в современных установках промывка ABC жидким азотом при -190 °С, в процессе которой из нее удаляются, помимо оксида углерода (II), метан и аргон.

Окончательная очистка ABC достигается каталитическим гидрированием, примесей, получившим название метанирования или предкатализа. Этот процесс проводится в специальных установках метанирования (рис. 14.6) при температуре 250-300 °С и давлении около 30 МПа на никель-алюминиевом катализаторе (Ni + Al2O3). При этом протекают экзотермические реакции восстановления кислородсодержащих примесей до метана, который не является ядом для железного катализатора, а вода конденсируется при охлаждении очищенного газа и удаляется из него:


СО + ЗН2 ? СН4 + Н2О -?Н,

СО2+ 4Н2 ?СH4 + 2Н2О - ?Н,

О2 + 2Н2 ?2Н2О - ?Н


Рис. 14.6. Схема установки метанирования ABC: 1 - компрессор, 2 - подогреватель, 3 - реактор метанирования, 4 - подогреватель воды, 5 - конденсатор, 6 - влагоотделитель


Если в предкатализе используется железный катализатор, в процессе гидрирования также образуется некоторое количество аммиака, в этом случае предкатализ называется продурующим.

Процесс метанирования прост, легко управляем, а выделяющееся за счет протекающих экзотермических реакций гидрирования тепло, используется в общей энерготехнологической схеме производства аммиака. Очищенная ABC, поступающая на синтез, содержит до 0025 об. долей аргона, 0,0075 об. долей метана и не более, 00004 об. долей оксида углерода (II), являющегося наиболее сильным каталитическим ядом.

В основе процесса синтеза аммиака лежит обратимая экзотермическая реакция, протекающая с уменьшением объема газа:

2+3H2 + 2NH3 + Q.


В соответствии с принципом Ле-Шателье при повышении давления и уменьшении температуры равновесие этой реакции смещается в сторону образования аммиака. Для обеспечения оптимальной скорости процесса необходимы катализатор, повышенное давление, температура 400… 500 °С и определенная объемная скорость вступающих в реакцию компонентов. В промышленности используется железный катализатор с добавками оксидов Аl2О3, К2О, СаО и SiO2.

Различают следующие промышленные системы агрегатов синтеза аммиака: низкого давления (10…20 МПа), среднего (20… 45 МПа) и высокого давления (60…100 МПа). Мировой практике широко применяются системы среднего давления, так как при этом наиболее удачно решаются вопросы выделения аммиака из азотно-водородной смеси при достаточно высокой скорости процесса.


СН4 + Н2О? СО + 3Н2


Происходит частичное сгорание водорода в кислороде воздуха:


Н2 + О2 = Н2О(пар)


В результате на этой стадии получается смесь водяного пара, оксида углерода (II) и азота.

Основным агрегатом установки для производства аммиака служит колонна синтеза (рис. 1.1). Трубчатая колонна в системе среднего давления представляет собой цилиндр 4 из хромованадиевой стали с толщиной стенок до 200 мм, диаметром 1…1,4 м и высотой около 20 м. Сверху и снизу она закрывается стальными крышками 2.

Конструктивно колонны различаются главным образом размерами корпуса и устройством внутренней насадки. В верхней части рассматриваемой колонны расположена катализаторная коробка 3, а в нижней - теплообменник 8, обеспечивающий автотермичность процесса. Катализаторная коробка связана с теплообменником центральной трубкой 7. Корпус колонны имеет тепловую изоляцию 5. Катализатор загружается на колосниковую решетку 6. Для обеспечения равномерного распределения температуры в слой катализатора вводятся двойные трубы 1.


Рис. 1.1. Колонна синтеза аммиака с двойными противоточными теплообменными трубками


В настоящее время колонны для синтеза аммиака совмещаются с паровыми котлами для утилизации теплоты выходящих газов (на 1 т аммиака приходится 0,6…1 т водяного пара при давлении 1,5…2 МПа). Колонны синтеза аммиака под средним давлением имеют производительность около 150 т аммиака в сутки и работают без замены катализатора в течение четырех лет.

При синтезе аммиака под средним давлением (рис. 1.1) азотно-водородная смесь (N22=1:3) подается в колонну 1, где на катализаторе происходит синтез аммиака; из колонны выходит азотно-водородно-аммиачная газовая смесь (содержание аммиака - 14…20%), имеющая температуру около 200 °С. Эта смесь направляется в водяной холодильник 2, охлаждается до 35 °С и поступает в сепаратор 3. Здесь из газа выделяется до 60% образовавшегося в колонне аммиака (при давлении 30 МПа аммиак не может сконденсироваться в холодильнике полностью). Полнее аммиак выделяется при охлаждении азотно-водородной смеси до более низких температур. Эта смесь с остатками аммиака из сепаратора 3 направляется в циркуляционный компрессор 4 и далее в фильтр 6 для отделения компрессорного масла. На входе в фильтр к оборотным газам добавляется свежая азотно-водородная смесь, сжатая до рабочего давления с помощью многоступенчатого компрессора 5. Из фильтра газовая смесь подается в систему вторичной конденсации аммиака, состоящую из конденсационной колонны 7 и испарителя жидкого аммиака 8. В конденсационной колонне газ предварительно охлаждается в расположенном в верхней части колонны теплообменнике и затем направляется в испаритель 8, где за счет испарения поступающего жидкого аммиака достигается охлаждение газа до - 5 °С и конденсация аммиака из газа до остаточного содержания в нем около 2,5% NНз. Сконденсировавшийся аммиак выделяется в нижней части конденсационной колонны 7, являющейся сепаратором. После отделения аммиака азотно-водородная смесь охлаждает в верхней части колонны 7 поступающий в нее газ, а затем вновь направляется в колонну синтеза 1.

В случае синтеза аммиака под более высоким давлением (45 МПа и выше) отпадает необходимость во вторичной его конденсации, так как на выходе из водяного холодильника остаточное содержание аммиака в азотно-водородной смеси незначительно.


Рис. 17.16. Схема установки для синтеза аммиака под средним давлением


Описание технологического процесса производства аммиака и его характеристика.

. Дуговой метод. Дуговой метод состоит в том, что через пламя электрической дуги продувается воздух. При температуре около 3000 °С протекает обратимая реакция

2 + О2 ?2NО - Q.


Образующийся оксид азота (II) может быть окислен до оксида азота (IV) и переработан в азотную кислоту и другие соединения. Для получения 1 т связанного азота этим способом расходуется 60 000…70 000 кВт-ч электроэнергии.

2. Цианамидный метод. Первым промышленным процессом, который использовался для получения аммиака, был цианамидный процесс. При нагревании извести СаО и углерода получали карбид кальция СаС2. Затем карбид нагревали в атмосфере азота и получали цианамид кальция СаСN2; далее аммиак получали гидролизом цианамида:


СаСN2(тв) + 3Н2О = 2NН3? + СаСО3(тв)


Этот процесс требовал больших затрат энергии и экономически был невыгоден.

Современный процесс получения аммиака основан на способности тонкоизмельченного карбида кальция при температуре около 1000 °С взаимодействовать с азотом по уравнению


СаС2 + N2 = CaCN2 + С + 302 кДж


Доля производства связанного азота цианамидным методой весьма незначительна.

Аммиачный метод фиксации азота заключается в его синтезе из азота и водорода с использованием специального катализатора:

2 + 3Н2 ? 2NН3? + 45,9 кДж


Этот метод имеет экономическое и технологическое преимущество перед остальными способами связывания элементарного азота

3. Аммиачный метод. Аммиачный метод связывания атмосферного азота состоит в соединении азота с водородом и получении аммиака:

N2+3H2 ?2NH3 + Q.


Он наиболее экономичен (расход электроэнергии составляет 4000…5000 кВт-ч на 1 т аммиака), технологически легче осуществим по сравнению с другими методами связывания атмосферного азота. В общем производстве азотных соединений свыше 90% приходится на аммиак. Водород для этой реакции получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды.

4. Вариант аммиачного метода. В 1909 году был разработан оригинальный метод одновременного получения аммиака и оксида алюминия из бокситов через нитрид алюминия по схеме, представленной на рис. 14.4.


Рис. 14.4. Производство аммиака из бокситов


Промышленные установки по этому методу были построены в период 1909-1918 гг. в ряде стран, но метод не нашел применения вследствие низкой экономичности производства.

Химическая и принципиальная схемы производства.

Основная стадия процесса синтеза аммиака из азотоводородной смеси описывается уравнением:

N2 + 3H2 = 2NH3


Однако, так как преобладающим методом получения ABC является конверсия метана воздухом и водяным паром, химическая схема производства аммиака включает помимо этой реакции несколько реакций воздушной и паровой конверсии:


СН4 + Н2О = ЗН2 + СО,

СН4 + 0,5O2(N2) = 2Н2(N2) + СО


и последующего превращения оксида углерода (II) в оксид углерода (IV):


СО + Н2О = Н2 + СО2

аммиак производство абсорбция колонна

После удаления оксида углерода (IV) из газовой смеси и коррекции ее состава получают ABC с содержанием азота и водорода в отношении 1: 3.

Таким образом, современное производство аммиака состоит из двух стадий: приготовления ABC и превращения ее в аммиак, представляя единую энерготехнологическую схему, в которой сочетаются операции получения ABC, ее очистки и синтеза аммиака и эффективно используются тепловые эффекты всех стадий процесса, что позволяет в несколько раз снизить затраты электроэнергии.


Рис. 14.7. Принципиальная схема производства аммиака

1-очистка природного газа от сернистых соединений, 2 - паровая конверсия метана, 3-воздушная конверсия метана, 4 - конверсия оксида углерода (II), 5-хемосорбционная очистка ABC, 6 - метаниро - вание, 7-синтез аммиака, 8 - абсорбция аммиака, 9-сжатие аммиака, I-природный газ, II-конвертированный газ, III-ABC, IV - метан

Принципиальная схема производства аммиака состоит из трёх стадий:

Первая стадия - получение АВС (азотоводородная смесь):

Я операция: очистка природного газа от сернистых соединений;

Я операция: паровая конверсия метана;

Я операция: воздушная конверсия метана;

Я операция: конверсия оксида углерода (II).

Вторая стадия - очистка газа от балластных примесей и примесей, отравляющих катализатор:

Я операция: очистка АВС абсорбционными методами от оксида углерода (II) и оксида углерода (IV);

Я операция: тонкая очистка АВС от оксида углерода (II) и оксида углерода (IV) методом метанирования или предкатадиза.

Третья стадия - синтез аммиака из АВС в присутствии катализатора.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Муниципальное образовательное учреждение

Новосафоновская средняя общеобразовательная школа

Производство аммиака: краткая характеристика

Прокопьевский район 2006


Введение

1.Способы получения аммиака

2. Современный процесс получения аммиака

Список использованной литературы

Введение

Общей экономической задачей каждого химического предприятия является получение химических веществ высокого качества и в достаточном количестве, чтобы их реализация приносила прибыль. С этим связано требование, чтобы все ресурсы использовались как можно более эффективно. Однако этого можно достичь лишь в том случае, если максимально эффективен сам химический процесс. В химической промышленности вместо понятия «реагенты» гораздо чаще используются термины «исходные материалы», «сырьевые материалы» или просто сырьё», иногда - «руда». Чтобы какой-либо процесс был экономически оправдан, необходимо достичь оптимального выхода целевого продукта из сырьевых материалов. Оптимальный выход не обязательно совпадает с теоретическим выходом или даже с максимально достижимым выходом. Получение максимально достижимого выхода может, например, потребовать слишком большого расхода какого-либо дорогостоящего исходного материала, или же слишком длительного проведения процесса, или же создаются экстремальные условия (очень высокие температуры или давления), чреватые опасными аварийными ситуациями и т.п., - всё это может сделать максимально достижимый выход экономически невыгодным.

Фактический выход каждого конкретного химического процесса может зависеть от целого ряда факторов, главные из них - температура, давление, присутствие катализатора, чистота исходных материалов, эффективность извлечения конечного продукта. Промышленное производство веществ подразумевает отличное знание теоретических закономерностей протекания химических реакций (энергетика химических реакций, химическая кинетика и катализ, химическое равновесие).

Все перечисленные ниже факторы важны, в особенности, если речь идёт о таких многотоннажных производствах, таких, как, например, производство аммиака.

Проектировщики химических предприятий создают сверхмощные установки по производству аммиака. Так, например, созданы установки, производящие 1000-1200 тонн аммиака в сутки. В настоящее время во всём мире ежегодно производится около 5 млн. тонн аммиака.


1. Способы получения аммиака

аммиак цианамидный процесс десульфуратор

Первым промышленным процессом, который использовался для получения аммиака, был цианамидный процесс. При нагревании извести СаО и углерода получали карбид кальция СаС2. Затем карбид нагревали в атмосфере азота и получали цианамид кальция СаСN2; далее аммиак получали гидролизом цианамида:

СаСN2(тв) + 3Н2О = 2NН3‍‍ + СаСО3(тв)

Этот процесс требовал больших затрат энергии и экономически был невыгоден.

В 1908 г. Немецкий химик Ф. Габер обнаружил, что аммиак можно получать из водорода и атмосферного азота на железном катализаторе. Первый завод по производству аммиака этим методом использовал водород, который получали электролизом воды. В последствии водород стали получать из воды путём восстановления коксом. Такой способ получения водорода намного экономичнее. После открытия Габера стремительно стало расти производство аммиака, это неудивительно, поскольку огромные количества аммиака необходимы для получения азот содержащих удобрений. На изготовление их используется приблизительно 80% всего получаемого в мире аммиака. Вместе с азотсодержащими удобрениями в почву вносится в растворимой форме азот, в котором нуждается большинство растений. Остальные ≈20% производимого аммиака используются для получения полимеров, взрывчатых веществ, красителей и других продуктов.

Современный процесс получения аммиак основан на его синтезе из азота и водорода с использованием специального катализатора:

N2 + 3Н2 ↔ 2NН3 + 45,9 кДж (1)


Поскольку данная реакция обратимая, возникает вопрос: при каких температурах и давления выгоднее всего добиваться максимального выхода

продукта? Так как реакция экзотермическая, то исходя из принципа Ле Шателье ясно, что чем ниже температура процесса, тем больше равновесие будет сдвигаться в сторону образования аммиака, и можно предположить, что следует максимально понижать температуру. Но в действительности всё обстоит сложнее: при низких температурах реакция практически не идёт, поэтому приходится принимать компромиссное решение. Поскольку для установления оптимального состояния равновесия реакции требуется низкая температура, а для достижения удовлетворительной скорости - высокая температура, на практике процесс проводят при температуре ≈ 400 – 500 оС.

Но даже при такой высокой температуре для достижения достаточной скорости реакции требуется присутствие специального катализатора. В качестве катализатора используется губчатое железо, активированное оксидами калия и алюминия.

Из уравнения реакции видно, что общее число молей уменьшается от 4 до 2. Согласно принципу Ле Шателье в таком случае процесс выгодно проводить, повышая давление. Но этот вывод лишь качественный, анна практике нужно точно знать, насколько увеличится выход NН3 (на 10% или всего на 0,1%) при увеличение давления. В таблице 1 количественно показано влияние температуры и давления на выход аммиака (процентное содержание аммиака в равновесной смеси) по реакции.

Из этой таблицы видно, что повышение температуры при любом давлении заметно снижает содержание аммиака в газовой смеси, однако при температурах ниже 500 оС скорость реакции очень мала, поэтому на практике процесс обычно проводят при температуре 450 оС.


Таблица 1

Что касается давления, то здесь используется давления порядка 300 – 100 атм, но чаще всего «среднее» давление ≈ 250 атм. Хотя при этих условиях только около 20% исходных веществ превращается в аммиак, однако в результате использования циркуляционной технологической схемы (введение непрореагировавших Н2 и N2 вновь в реакцию) суммарная степень превращения исходных веществ в аммиак является очень высокой.

2. Современный процесс получения аммиака

Работа современного аммиачного завода очень сложна. Это утверждение кажется удивительным, если «ориентироваться» только лишь на достаточно просто выглядящее уравнение реакции (1), являющееся основой синтеза аммиака. Однако утверждение о сложности промышленного синтеза аммиака не покажется чрезмерным уже после первого ознакомления со схемой действия аммиачного завода, работающего на природном газе (рис.1). Первая стадия в процессе синтеза аммиака включает десульфуратор. Десульфуратор - техническое устройство по удалению серы из природного газа. Это совершенно необходимая стадия, поскольку сера представляет собой каталитический яд и «отравляет» никелевый катализатор на последующей стадии получения водорода.

Вторая стадия промышленного синтеза аммиака предполагает конверсию метана (промышленное получение водорода). Конверсия метана - это обратимая реакция, протекающая при 700 – 800 оС и давлении 30 – 40 атм с помощью никелевого катализатора при смешивании метана с парами воды:

СН4 + Н2О ↔ СО + 3Н2 (2)

Образовавшийся по данной реакции водород, казалось бы, уже можно использовать для синтеза аммиака по реакции (1) - для этого необходимо запустить в реактор воздух содержащий азот. Так и поступают на стадии (3), однако на этой стадии происходят другие процессы.

Происходит частичное сгорание водорода в кислороде воздуха:

2Н2 + О2 = Н2О(пар)

В результате на этой стадии получается смесь водяного пара, оксида углерода (II) и азота. Водяной пар, в свою очередь, восстанавливается снова с образованием водорода, как на второй стадии по торой стадии по им образом, после первых трёх стадий имеется смесь водорода, азота и «нежелательного» оксида углерода (II).

На рис.1 стадия (4) обозначена как реакция «сдвига», но проходить она может при двух температурных режимах и разных катализаторах. Окисление

СО, образующегося на двух предыдущих стадиях, до СО2 проводят именно по этой реакции:

СО + Н2О(пар) ↔ СО2 + Н2 (3)

Процесс «сдвига» проводят последовательно в двух «ректорах сдвига». В первом из них используется катализатор Fe3О4 и процесс проходит при достаточно высокой температуре порядка 400 оС. Во втором процессе используется более эффективный медный катализатор и процесс удаётся провести при более низкой температуре.

На пятой степени оксид углерода (IV) «вымывают» из газовой смеси при помощи поглощения щелочным раствором:

КОН + СО2 = К2СО3.

Реакция «сдвига» (3) обратимая и после 4-й стадии в газовой смеси на самом деле остаётся ещё ≈ 0,5% СО. Этого количества СО вполне достаточно, чтобы загубить железный катализатор на главной стадии синтеза аммиака(1). На 6-й стадии оксид углерода (II) удаляют реакцией конверсии водородом в метан на специальном никелевом катализаторе при температурах 300 – 400 оС:

СО + 3Н2 ↔ СН4 +Н2О

Газовую смесь, которая теперь содержит ≈ 75% водорода и 25% азота, подвергают сжатию; давление её при этом возрастает от 25 – 30 до 200 – 250 атм. В соответствии с уравнением Клайперона-Менделеева такое сжатие приводит к очень резкому повышению температуры смеси. Сразу же после сжатия приходиться охлаждать до 350 – 450 оС. Именно этот процесс и описывается с точностью реакцией (1).


Список использованной литературы

1.Н.Е. Кузьменко, В.В. Ерёмин, В.А. Попков. Химия. Теория и задачи. - М.: ОНИКС 21 век», «Мир и образование», 2003.

Аммиак (NH3) представляет собой химическое соединение водорода с азотом. Свое название он получил от греческого слова «hals ammniakos» или латинского «sal ammoniacus» которые переводятся одиноково - «нашатырь». Именно такое вещество под названием получали в Ливийской пустыне в оазисе Аммониум.

Аммиак считается очень ядовитым веществом, которое способно раздражать слизистые оболочки глаз и дыхательных путей. Первичными симптомами являются обильное слезотечение, одышка и воспаление легких. Но вместе с тем, аммиак - ценное химическое вещество, которое широко используется для получения неорганических кислот, например, азотной, синильной, а также мочевины и азотсодержащих солей. Жидкий аммиак - это превосходное рабочее вещество холодильных контейнеров и машин, так как он имеет большую удельную теплоту испарения. Водные используют как жидкие удобрения, а также для аммонизации суперфосфатов и туковых смесей.

Получение аммиака из отходящих газов в процессе коксования угля является древнейшим и весьма доступным методом, но на сегодняшний день он уже устарел и практически не используется.

Современным и основным способом является получение аммиака в промышленности на основе процесса Габера. Его суть в прямом взаимодействии азота и водорода, которое протекает в результате конверсии углеводородных газов. В качестве исходного сырья выступают обычно нефтепереработки, попутные нефтяные газы, остаточные газы от производства ацетилена. Суть метода конверсионного получения аммиака состоит в разложении метана и его гомологов при высокой температуре на составляющие: водород и с участием окислителей - кислорода и водяного пара. При этом к конвертируемому газу подмешивают воздух, обогащенный кислородом, либо атмосферный воздух. Изначально реакция получения аммиака на основе конвертируемого газа протекает с выделение тепла, но с понижением объема исходных продуктов реакции:

N2 + 3H2 ↔ 2NH3 + 45,9 кДж

Однако получение аммиака в промышленных масштабах ведется с использованием катализатора и при искусственно созданных условиях, которые позволяют увеличить выход готового продукта. В атмосфере, где проходит получение аммиака, увеличивается давление до 350 атмосфер, а температура поднимается до 500 градусов Цельсия. При таких условиях выход аммиака - около 30%. Газ удаляется из зоны реакции с помощью метода охлаждения, а азот и водород, которые не прореагировали, возвращаются обратно в колонну синтеза и снова могут участвовать в реакциях. В ходе синтеза очень важно очистить смесь газов от каталитических ядов, веществ, способных сводить на нет действие катализаторов. Такими веществами являются пары воды, СО, As, P, Se, O2, S.

В качестве катализатора в реакциях синтеза азота и водорода выступает пористое железо с примесями оксидов алюминия и калия. Только это вещество, из всех 20 тысяч ранее перепробованных, позволяет достичь равновесного состояния реакции. Такой принцип получения аммиака считается самым экономичным.

Получение аммиака в лаборатории основано на технологии вытеснения его из аммониевых солей сильными щелочами. Схематически эта реакция представлена следующим образом:

2NH4CI + Ca(OH)2 = 2NH3 + CaCl2 + 2H2O

NH4Cl + NaOH = NH3 + NaCl + H2O

Чтобы удалить лишнюю влагу и осушить аммиак, его пропускают через смесь едкого натра и извести. Получение аммиака очень сухого достигается в результате растворения в нем металлического натра и последующей перегонки смеси. Чаще всего такие реакции проводят в закрытой металлической системе под вакуумом. Причем такая система должна выдержать высокое давление, которое достигается выделяющимися парами аммиака, до 10 атмосфер при комнатной температуре.

Влияние температуры, давления и катализаторов на скорость протекания реакций и химические равновесия активно используется в химической промышленности при получении многих химических продуктов. В данном разделе мы познакомимся с промышленным получением аммиака и подробно остановимся на том, как влияют на его производство все указанные факторы. Затем мы познакомимся с промышленным получением серной кислоты.

ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ АММИАКА

В Великобритании имеется восемь заводов по выпуску аммиака. Их совместная производительность превышает 2 млн. тонн в год. В настоящее время во всем мире ежегодно производится приблизительно 5 млн. тонн аммиака. На рис. 7.1 рост производства аммиака сопоставлен с ростом населения земного шара. Для чего необходимо производить столь большое количество аммиака?

Рис. 7.1. Рост населения земного шара и мирового производства аммиака.

Таблица 7.2. Применения аммиака и родственных продуктов

Главным образом он необходим для получения азотсодержащих удобрений. изготовление удобрений расходуется приблизительно 80% всего получаемого аммиа] Вместе с азотсодержащими удобрениями в почву вносится в растворимой форме в котором нуждается большинство растений. Остальные 20% производимого аммиа используются для получения полимеров, взрывчатых веществ и других продукт! Различные применения аммиака указаны в табл. 7.2.

Производство аммиака

Первым промышленным процессом, который использовался для получения аммиа был цианамидный процесс. При нагревании извести и углерода получали карб кальция Затем карбид кальция нагревали в атмосфере азота и получг цианамид кальция . Аммиак получили гидролизом цианамида кальция:

Этот процесс требовал больших затрат энергии и был неэкономичен.

В 1911 г. Ф. Габер обнаружил, что аммиак можно синтезировать непосредствет из азота и водорода, используя железный катализатор. Первый завод по производс аммиака этим методом использовал водород, который получали электролизом во, Впоследствии водород стали получать из воды путем восстановления коксом. Э способ получения водорода намного экономичнее.

Фриц Габер (1868 1934)

В 1908 г. немецкий химик Габер обнаружил, что аммиак можно получать водорода и атмосферного азота на железном катализаторе. Для проведения этого процесса необходимы высокие давление и умеренно высокая температура. Открытие Габера позволило Германии продолжать производство взрывчатых веществ во время первой мировой войны. В это время блокада Антанты препятствовала ввозу в Германию природных залежей нитрата калия (чилийской селитры), которыми пользовалась прежде в качестве сырья для производства взрывчатых веществ.

Через год, после того как Габер разработал процесс синтеза аммиака, создал стеклянный электрод для измерения pH (кислотно-основных свойств) растворов (см. гл. 10).

Габер получил Нобелевскую премию по химии в 1918 г. После прихода Гитлера к власти Габер был вынужден эмигрировать из Германии в 1933 г.

(Производство азотной кислоты и нитратов из аммиака описано в разд. 1)

Современный процесс производства аммиака

Современный процесс получения аммиака основан на его синтезе из азота и водорода при температурах 380-450°С и давлении 250 атм с использованием железного катализатора:

Азот получают из воздуха. Водород получают восстановлением воды (пара) с помощью метана из природного газа либо из лигроина. Лигроин (нафта) представляет собой жидкую смесь алифатических углеводородов, которая получается при переработке сырой нефти (см. гл. 18).

Работа современного аммиачного завода очень сложна. На рис. 7.2 показана упрощенная схема действия аммиачного завода, работающего на природном газе. Эта схема действия включает восемь стадий.

1-я стадия. Удаление серы из природного газа. Это необходимо, поскольку сера представляет собой каталитический яд (см. разд. 9.2).

2-я стадия. Получение водорода восстановлением пара при 750°С и давлении 30 атм с помощью никелевого катализатора:

3-я стадия. Впуск воздуха и сгорание части водорода в кислороде вводимого воздуха:

В результате получается смесь водяного пара, моноксида углерода и азота. Водяной пар восстанавливается с образованием водорода, как на 2-й стадии.

4-я стадия. Окисление моноксида углерода, образующегося на стадиях 2 и 3, до диоксида углерода по следующей реакции «сдвига»:

Этот процесс проводится в двух «реакторах сдвига». В первом из них используется катализатор из оксида железа и процесс проводится при температуре порядка 400°С. Во втором используется медный катализатор и процесс проводится при температуре 220°С.

Рис. 7.2. Стадии промышленного процесса получения аммиака.

5-я стадия. Вымывание диоксида углерода из газовой смеси при помощи буферного щелочного раствора карбоната калия или раствора какого-либо амина, например этаноламина . Диоксид углерода в конце концов сжижают и используют для производства мочевины, либо выпускают в атмосферу.

6-я стадия. После 4-й стадии в газовой смеси остается еще около 0,3% моноксида углерода. Поскольку он может отравлять железный катализатор во время синтеза аммиака (на 8-й стадии), моноксид углерода удаляют путем конверсии водородом в метан на никелевом катализаторе при температуре 325°С.

7-я стадия. Газовую смесь, которая теперь содержит приблизительно 74% водорода и 25% азота, подвергают сжатию; при этом ее давление возрастает от 25-30 атм до 200 атм. Поскольку это приводит к повышению температуры смеси, ее сразу же после сжатия охлаждают.

8-я стадия. Газ из компрессора поступает теперь в «цикл синтеза аммиака». Схема, приведенная на рис. 7.2, дает упрощенное представление об этой стадии. Сначала газовая смесь попадает в каталитический конвертер, в котором используется железный катализатор и поддерживается температура 380-450°С. Газовая смесь, выходящая из этого конвертера, содержит не более 15% аммиака. Затем аммиак сжижают и направляют в приемный бункер, а непрореагировавшие газы возвращают в конвертер.

Выбор оптимальных условий процесса синтеза аммиака

Чтобы процесс синтеза аммиака был максимально эффективным и экономичным, необходимо тщательно подобрать условия его проведения. Важнейшими показателями, которые учитываются при этом, являются: 1) выход, 2) скорость и 3) энергоемкость процесса. Обратимся к 8-й стадии процесса, т. е. непосредственно к синтезу аммиака, и исследуем влияние давления, температуры и катализаторов на эффективность этого процесса.

Влияние давления. Как сказано выше, получение аммиака может быть представлено следующим уравнением:

Константа равновесия этой реакции определяется выражением

Если выразить входящие в это выражение парциальные давления газов через их мольные доли и полное давление Р в системе, получится такое выражение:

Это выражение можно упростить, придав ему вид

При заданной температуре величина должна оставаться постоянной. Если полное давление Р в системе повысится, член в приведенном выше выражении должен уменьшиться. Отсюда следует, что, поскольку величина должна оставаться постоянной, отношение Должно увеличиться. Таким образом, повышение полного давления должно привести к увеличению и уменьшению Следовательно, повышение давления благоприятствует протеканию прямой реакции, т. е. повышению выхода аммиака.

Влияние температуры и катализаторов. Синтез аммиака представляет собой экзотермический процесс (см. табл. 7.1, а). Следовательно, повышение температуры должно благоприятствовать протеканию обратной реакции (см. предыдущий раздел). Это означает, что понижение температуры должно повышать выход реакции синтеза аммиака (рис. 7.3). К сожалению, однако, при низких температурах очень замедляется скорость этой реакции, а следовательно, и скорость получения аммиака. Другими словами, при низких температурах процесс должен иметь низкую производительность, а значит, низкую экономичность. Для достижения оптимальной производительности необходимо выбрать компромиссный вариант между двумя крайними возможностями:

1) высоким выходом и низкой скоростью реакции (при низких температурах) и

2) низким выходом и высокой скоростью реакции (при высоких температурах).

Рис. 7.3. Влияние температуры и давления на выход аммиака в процессе Габера (термин «относительный выход» объясняется в разд. 4.2).

Разумеется, скорость реакции повышается благодаря использованию катализатора. Таким образом, катализатор позволяет проводить процесс эффективнее при низких температурах. Эффективность железного катализатора, используемого для синтеза аммиака, повышается, если к нему добавляют так называемые промоторы. Для промотирования эффективности железного катализатора используются оксиды калия и алюминия.

Обстоятельное рассмотрение экономичности процесса синтеза аммиака показывает, что для достижения оптимального выхода и производительности следует поддерживать температуру приблизительно равной 400°С, а давление равным 250 атм.

Энергетический баланс

Обычный аммиачный завод производит ежесуточно около 1000 т аммиака. При этом потребность в водяном паре составляет 6000 т/сут, чтобы приводить в действие паровые турбины, от которых работают компрессоры. К счастью, химические процессы, проводимые при получении аммиака, являются экзотермическими. Вся энергия, которая высвобождается на ранних стадиях процесса производства аммиака, используется для получения сильно сжатого пара. Энергия, которая высвобождается непосредственно при самом синтезе аммиака (8-я стадия), используется для поддержания температуры каталитического конвертера на уровне 400°С. Общая тепловая эффективность аммиачного завода составляет около 60%. Другими словами, приблизительно 40% затрачиваемой энергии, которая обеспечивается природным газом, составляют тепловые потери.

Особенности проектирования аммиачного завода

Конструирование современного аммиачного завода, комплектование его штатов и эксплуатация требуют участия квалифицированных специалистов и применения сложного инженерного оборудования. Например, компрессоры, используемые на 3-й стадии процесса для сжатия воздуха и на 7-й стадии для сжатия синтез-газа (смеси азота и водорода) должны быть рассчитаны на то, чтобы выдерживать очень высокие давления - в некоторых случаях до 350 атм. Эти компрессоры приводятся в действие паровыми турбинами, в которые поступает пар под давлением в 100 атм и при температуре выше 400°С. Такие турбины вращаются со скоростью, достигающей нескольких тысяч оборотов в минуту.

Реакторы, в которых проводится синтез аммиака, тоже должны удовлетворять очень высоким требованиям. При повышенных давлениях и температурах, при которых работают эти реакторы, водород может воздействовать на сталь, диффундируя в металл. В результате водород вступает в реакцию с углеродом, содержащимся в стали, и образует метан. Это приводит к возникновению раковин в металле и делает сталь хрупкой. Чтобы воспрепятствовать этому, реакторы конструируют из специальных сплавов, содержащих хром, молибден и никель.

Расположение аммиачного завода тоже имеет важное экономическое значение. В идеальном случае такой завод должен располагаться вблизи от 1) источников энергии;

2) источников воды, которая может использоваться в больших количествах;

3) транспортных магистралей: шоссейных дорог, железных дорог, реки или моря.

Четыре аммиачных завода Великобритании расположены вблизи Биллингема на р. Тей (в Шотландии). Это место было выбрано в свое время по причине близости от угольных залежей в Дархеме. Оно оказалось удобным и в настоящее время из-за своей близости к залежам нефти и газа в континентальном шельфе Северного моря.


Аммиак – NH 3

Аммиак (в европейских языках его название звучит как «аммониак») своим названием обязан оазису Аммона в Северной Африке, расположенному на перекрестке караванных путей. В жарком климате мочевина (NH 2) 2 CO, содержащаяся в продуктах жизнедеятельности животных, разлагается особенно быстро. Одним из продуктов разложения и является аммиак. По другим сведениям, аммиак получил своё название от древнеегипетского слова амониан . Так называли людей, поклоняющихся богу Амону. Они во время своих ритуальных обрядов нюхали нашатырь NH 4 Cl, который при нагревании испаряет аммиак.


1. Строение молекулы

Молекула аммиака имеет форму тригональной пирамиды с атомом азота в вершине . Три неспаренныхp-электрона атома азота участвуют в образовании полярных ковалентных связей с 1s-электронами трёх атомов водорода (связи N−H), четвёртая пара внешних электронов является неподелённой, она может образовать донорно-акцепторную связь с ионом водорода, образуя ион аммония NH 4 + .

Вид химической связи: ковалентная полярная, три одинарные σ - сигма связи N-H

2. Физические свойства аммиака

При нормальных условиях - бесцветный газ с резким характерным запахом (запах нашатырного спирта), почти вдвое легче воздуха, ядовит. По физиологическому действию на организм относится к группе веществ удушающего и нейротропного действия, способных при ингаляционном поражении вызвать токсический отёк лёгких и тяжёлое поражение нервной системы. Пары аммиака сильно раздражают слизистые оболочки глаз и органов дыхания, а также кожные покровы. Это мы и воспринимаем как резкий запах. Пары аммиака вызывают обильное слезотечение, боль в глазах, химический ожог конъюктивы и роговицы, потерю зрения, приступы кашля, покраснение и зуд кожи. Растворимость NH 3 в воде чрезвычайно велика - около 1200 объёмов (при 0 °C) или 700 объёмов (при 20 °C) в объёме воды.

3.

В лаборатории

В промышленности

Для получения аммиака в лаборатории используют действие сильных щелочей на соли аммония:

NH 4 Cl + NaOH = NH 3 + NaCl + H 2 O

(NH 4) 2 SO 4 + Ca(OH) 2 = 2NH 3 + CaSO 4 + 2H 2 O

Внимание ! Гидроксид аммония неустойчивое основание, разлагается: NH 4 OH ↔ NH 3 + H 2 O

При получении аммиака держите пробирку - приёмник дном кверху, так как аммиак легче воздуха:

Промышленный способ получения аммиака основан на прямом взаимодействии водорода и азота:

N 2(г) + 3H 2(г) ↔ 2NH 3(г) + 45,9к Дж

Условия:

катализатор – пористое железо

температура – 450 – 500 ˚С

давление – 25 – 30 МПа

Это так называемый процесс Габера (немецкий физик, разработал физико-химические основы метода).

4. Химические свойства аммиака

Для аммиака характерны реакции:

  1. с изменением степени окисления атома азота (реакции окисления)
  2. без изменения степени окисления атома азота (присоединение)

Реакции с изменением степени окисления атома азота (реакции окисления)

N -3 → N 0 → N +2

NH 3 – сильный восстановитель.

с кислородом

1. Горение аммиака (при нагревании)

4 NH 3 + 3 O 2 → 2 N 2 + 6 H 2 0

2. Каталитическое окисление амииака (катализатор Pt Rh , температура)

4NH 3 + 5O 2 → 4NO + 6H 2 O

Видео - Эксперимент " Окисление аммиака в присутствии оксида хрома"

с оксидами металлов

2 NH 3 + 3CuO = 3Cu + N 2 + 3 H 2 O

с сильными окислителями

2 NH 3 + 3 Cl 2 = N 2 + 6 HCl (при нагревании)

аммиак – непрочное соединение, при нагревании разлагается

2NH 3 ↔ N 2 + 3H 2

Реакции без изменения степени окисления атома азота (присоединение - Образование иона аммония NH 4 + по донорно-акцепторному механизму)


Видео - Эксперимент "Качественная реакция на аммиак"


Видео - Эксперимент "Дым без огня"


Видео - Эксперимент "Взаимодействие аммиака с концентрированными кислотами"

Видео - Эксперимент "Фонтан"

Видео - Эксперимент "Растворение аммиака в воде"

5. Применение аммиака

По объемам производства аммиак занимает одно из первых мест; ежегодно во всем мире получают около 100 миллионов тонн этого соединения. Аммиак выпускается в жидком виде или в виде водного раствора – аммиачной воды, которая обычно содержит 25% NH 3 . Огромные количества аммиака далее используются для получения азотной кислоты , которая идет на производство удобрений и множества других продуктов. Аммиачную воду применяют также непосредственно в виде удобрения, а иногда поля поливают из цистерн непосредственно жидким аммиаком. Из аммиака получают различные соли аммония, мочевину, уротропин . Его применяют также в качестве дешевого хладагента в промышленных холодильных установках.

Аммиак используется также для получения синтетических волокон , например, найлона и капрона. В легкой промышленности он используется при очистке и крашении хлопка, шерсти и шелка . В нефтехимической промышленности аммиак используют для нейтрализации кислотных отходов, а в производстве природного каучука аммиак помогает сохранить латекс в процессе его перевозки от плантации до завода. Аммиак используется также при производстве соды по методу Сольве. В сталелитейной промышленности аммиак используют для азотирования – насыщения поверхностных слоев стали азотом, что значительно увеличивает ее твердость.

Медики используют водные растворы аммиака (нашатырный спирт) в повседневной практике: ватка, смоченная в нашатырном спирте, выводит человека из обморочного состояния. Для человека аммиак в такой дозе не опасен.

ТРЕНАЖЁРЫ

Тренажёр №1 "Горение аммиака"

Тренажёр №2 "Химические свойства аммиака"

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Осуществить превращения по схеме:

а) Азот→ Аммиак → Оксид азота (II)

б) Нитрат аммония → Аммиак → Азот

в) Аммиак → Хлорид аммония → Аммиак → Сульфат аммония

Для ОВР составить е-баланс, для РИО полные, ионные уравнения.

№2. Напишите четыре уравнения химических реакций, в результате которых образуется аммиак.