Установка фрез. Оправки для фрезерных станков Крепление терцевых фрез

15.07.2019

Распространенный способ крепления зубьев-пластин в корпусе фрезы - напайка. Чаще всего напайку применяют для инструментов небольших размеров и сложной конфигурации, где трудно или невозможно обеспечить механическое закрепление режущих пластин.

Но при напайке твердосплавных пластин в них часто появляются мельчайшие трещины, вызывающие снижение стойкости инструмента. Чтобы избежать появления трещин, совершенствуют способы напайки пластин, создают условия для равномерного их нагрева и охлаждения. Полностью устранить растрескивание пластин при напайке не удается из-за разной скорости расширения и сжатия при нагревании или охлаждении твердосплавной пластины и материала корпуса. Разница в расширении при нагреве не опасна, так как пластина еще не связана с корпусом. А когда инструмент охлаждается после напайки, пластина уже «прихвачена» к своему гнезду. Объемы корпуса и пластины сокращаются с разной скоростью, в месте спая появляются большие напряжения, и хрупкий инструментальный материал растрескивается.

Поэтому стремятся заменить пайку механическим креплением твердосплавных пластин. Стойкость таких инструментов значительно выше, чем напайных.

Рисунок 5 – Способы крепления режущих пластин фрез

Способ крепления пластин цилиндрическим клином и дифференциальным винтом (рис 5, а). Твердосплавную пластину устанавливают в паз корпуса и закрепляют цилиндрическим клином. Клин затягивается ввинчиванием дифференциального винта о внутренним шестигранником. Дифференциальным винт называется потому, что шаг резьбы в верхней и нижней его частях различен. Предположим, что шаг резьбы на головке винта равен 0,5 мм, а на стержне 1 мм. Ввернем винт на один оборот. Он войдет в корпус на 1 мм. Одновременно головка винта переместится в резьбе клина на 0,5 мм. А так как общее перемещение головки должно быть также на 1 мм, то на протяжении 0,5 мм головка будет перемещаться вместе с клином. Таким образом, винт ввертывается в корпус быстрее, чем в клин, и клин зажимает пластину. Преимущества дифференциального винта проявляются при замене пластины. При вывинчивании он быстрее выходит из корпуса, чем из клина, и поэтому вытягивает клин из гнезда.

Этот вид крепления отличается компактностью и удобен в эксплуатации, но детали при этом должны быть изготовлены в высокой точностью. Когда клин находится в своем гнезде, ось его отверстия должна обязательно совпадать о осью отверстия корпуса. В противном случае дифференциальный винт будет стремиться сдвинуть клин в сторону и крепление будет ненадежным.

Значительно проще фрезы, у которых клин крепят обычным винтом (рио. 5, б); такая конструкция компактна, но менее удобна в эксплуатации. Чтобы заменить пластину, необходимо вывернуть крепежный винт и вместо него ввинтить в резьбовое отверстие клина специальный ключ. Этот ключ упирается в дно паза и вытягивает клин.

Крепление клиньями и винтами применяют для торцовых, дисковых и концевых фрез диаметром не менее 30 мм.

Особенно сложно крепить твердосплавную пластину в корпусе дисковой фрезы. Если фреза узкая, нельзя использовать крепление клином и винтом, а обычный клин может сместиться под действием боковых сил, возникающих при работе фрезы. Способ механического крепления для таких фрез разработан во ВНИИ. При этом способе пластины закрепляют клиньями с цилиндрической опорной поверхностью (рис. 5, в). Такое крепление достаточно надежно, но сложно в изготовлении.

Общие указания по закреплению фрез

Чистота обработки и производительность станка во многом зависят от качества закрепления фрезы на станке.
Если фреза закреплена неверно, она будет бить, вследствие чего нагрузка на отдельные зубья будет чрезмерной и они могут поломаться. Если фреза установлена далеко от опоры шпинделя, оправка может отжиматься.
Оправки, при помощи которых закрепляются фрезы, необходимо содержать чисто вытертыми; их не следует забивать, помня, что всякая забоина приводит к биению фрезы.
Способ закрепления фрезы на станке зависит от ее конструкции и размеров, а также от характера работы, выполняемой фрезой.
Рассмотрим основные способы крепления фрез.
1. Фрезу надевают на центровую оправку, один конец которой входит в коническое гнездо шпинделя, а другой поддерживается серьгой.
2. Фрезу надевают на концевую оправку, которая коническим концом входит в коническое гнездо шпинделя.
3. Фрезу с коническим хвостовиком устанавливают хвостовиком в коническое гнездо шпинделя.
4. Фрезу закрепляют цилиндрическим хвостовиком в гнезде шпинделя при помощи специальных патронов.
5. Фрезу надевают на выступающий передний конец шпинделя и закрепляют на нем.
Фрезеровщик обязан знать тип и номер конуса гнезда шпинделя своего станка и крепительные размеры переднего конца шпинделя. Фрезерные станки отечественного производства имеют стандартный размер переднего конуса шпинделя (см. рис. 22), поэтому фрезерные оправки, изготовленные со стандартным хвостовикам, подходят к ним.
На рис. 43 показаны оправки с коническим хвостовиком 1, который соответствует коническому гнезду 2 (см. рис. 22) переднего конца шпинделя отечественных фрезерных станков и центрируется в нем. Выемки 2 (рис. 43) во фланце оправки надеваются на поводки 3 (см. рис. 22), вставленные в пазы на торце шпинделя.

Центровые оправки (рис. 43, а и б) одним концом закрепляются в гнезде шпинделя станка, а другим поддерживаются подшипником серьги. Оправка (рис. 43, а) для закрепления фрез, работающих при больших усилиях, имеет большую длину, позволяющую применять посредине добавочную серьгу. Оправка на рис. 43, б предназначена для легких работ.
Концевые оправки (рис. 43, в) одним концом закрепляются в гнезде шпинделя станка, а на другом конце оправки закрепляется насадная фреза, которая работает вместе с оправкой как концевая фреза.

Закрепление фрез на центровых оправках

На рис. 44 приведены различные случаи закрепления фрез на центровых оправках. Конический хвостовик оправки входит в коническое отверстие 8 шпинделя, другой конец входит в подшипник 1 серьги.

На рис. 44, а показано крепление на оправке цилиндрической фрезы 5 с винтовыми зубьями. Фреза надевается на среднюю (рабочую) часть оправки и может быть установлена в любом месте оправки при помощи установочных колец 3, 4, 6 и 7. Кольца надеты на оправку так же, как фреза 5. Крайнее левое кольцо 7 торцом упирается в заплечик, имеющийся на оправке, а в крайнее правое кольцо 5 упирается гайка 2, навернутая на правый конец оправки.
На рис 44, б показано крепление на оправке нескольких фрез вплотную одна к другой (набор фрез); ширина установочных колец здесь различна.
Нормальный набор установочных колец, прилагаемых к фрезерному станку, состоит из колец шириной от 1 до 50 мм: 1,0; 1,1; 1,2; 1,3; 1,4; 1,5; 1,6; 1,7; 1,8; 1,9; 2,0; 3,0; 5,0; 8,0; 10; 15; 20; 30; 40 и 50 мм .
При помощи установочных колец фрезы могут быть закреплены на определенном расстоянии друг от друга. На рис. 44, в показано крепление двух фрез на расстоянии А друг от друга. Расстояние А устанавливается при помощи подбора колец.
Иногда, регулируя расстояния между фрезами на оправке, приходится ставить между установочными кольцами тонкие прокладки из алюминиевой или медной фольги и даже писчей или папиросной бумаги, так как иногда, пользуясь имеющимися в наборе кольцами, не удается получить необходимого расстояния между фрезами.
Фрезы малых диаметров, работающие при небольших усилиях, удерживаются на оправке от провертывания трением между торцами фрезы и торцами колец, возникающим при затяжке гайкой. При тяжелых работах этого трения недостаточно, и фреза удерживается на оправке при помощи шпонки. По всей длине средней (рабочей) части оправки профрезерована шпоночная канавка, в ней крепится шпонка, на которую надевают фрезу. Кольца в этом случае также ставят на шпонке.
Отверстия в кольцах, равно как и рабочие части фрезерных оправок, изготовляют только определенных диаметров. На отечественных заводах приняты оправки диаметром 16; 22; 27; 32; 40; 50 и 60 мм. Шпоночные канавки и шпонки также изготовляют определенных размеров, так что имеющиеся в инструментальной кладовой фрезы, оправки, кольца и шпонки одного номинала обязательно подойдут друг к другу.
Фрезерные оправки должны быть прямыми, без забоин и вмятин, а кольца должны иметь торцы без забоин и заусенцев.
При установке фрез надо располагать их как можно ближе к переднему концу шпинделя станка, чтобы уменьшить нагрузку на оправку. Если по некоторым причинам это не удается, надо ставить добавочную серьгу, что дает добавочную опору и разгружает фрезерную оправку.
На рис. 45 показана добавочная серьга на станке при фрезеровании бруска широкой фрезой.

Порядок установки и закрепления фрезы на оправке и закрепления оправки в гнезде шпинделя станка подробно изложен при рассмотрении наладки станка.

Закрепление фрез на концевых оправках

Фрезы, работающие зубьями, расположенными на торцовой поверхности, закрепляются на концевых оправках.
На рис. 46 показана концевая оправка. Конический конец 1 вставляют в коническое гнездо шпинделя станка. Фрезу надевают на цилиндрическую часть оправки и затягивают винтом 3. Чтобы фреза не провертывалась, на оправке имеется шпонка 2.


Закрепление фрез с коническим и цилиндрическим хвостовиком

Фрезы с коническим хвостовиком, размер которого совпадает с размерами конического гнезда шпинделя станка, вставляют хвостовиком в шпиндель и закрепляют в нем посредством затяжного винта (шомпола). Это самый простой способ закрепления фрезы как для горизонтально-, так и для вертикально-фрезерного станков.
Если размер конуса хвостовика фрезы меньше размера конуса гнезда шпинделя, то прибегают к переходным втулкам (рис. 47). Наружный конус такой втулки соответствует гнезду шпинделя станка, а внутренний - хвостовику фрезы. Переходную втулку с вставленной фрезой устанавливают в шпиндель и затягивают при помощи затяжного винта.

Закрепление фрез с цилиндрическим хвостовиком производится при помощи патрона (рис. 48). Фрезу вставляют в цилиндрическое отверстие патрона 1 и закрепляют гайкой 2, навертываемой на передний конец патрона и охватывающей заплечиками разжимную втулку 5. Патрон с надетой фрезой устанавливают в шпиндель горизонтально- или вертикально-фрезерного станка и закрепляют затяжным винтом. Снятие фрезы производится освобождением гайки 2.


Закрепление насадных фрез большого диаметра

Торцовые фрезы диаметром 125 мм и выше изготовляют насадными. Такие фрезы могут иметь коническое (рис. 49, а) или цилиндрическое (рис. 49, б) посадочное отверстие.

Фрезы с коническим посадочным отверстием насаживают на конус 2 фрезерной оправки (рис. 50 и 51) и при помощи вкладыша 3 и винта 4 закрепляют на нем. Вкладыш 3 входит в паз, имеющийся в корпусе фрезы. Оправка на рис. 50 вместе с фрезой крепится к шпинделю фрезерного станка затяжным винтом (шомполом), который ввертывается в резьбовое отверстие оправки. Оправку на рис. 51 вместе с фрезой надевают цилиндрическим пояском 5 на торец шпинделя фрезерного станка и крепят к ней четырьмя винтами 1 (см. также рис. 22). Чтобы оправка не провертывалась, в ней предусмотрены два паза 6, в которые входят сухари на торце шпинделя станка.
Фрезы с цилиндрическим посадочным отверстием (см. рис. 49, б) крепят непосредственно к торцу шпинделя станка с помощью четырех винтов.
Наиболее точное центрирование фрезы на шпинделе фрезерного станка и, следовательно, наименьшее биение зубьев в работе обеспечивают фрезы с коническим посадочным отверстием.
Крепление по рис. 50 применяют на вертикально- и горизонтально-фрезерных станках, крепление по рис. 51 - главным образом на продольно-фрезерных станках, когда необходимо иметь большой вылет торца фрезы от торца шпинделя.

О том, как правильно установить фрезу на станок, расскажем в этом информационном выпуске.

Фреза – многозубый режущий инструмент, применяемый для обработки материалов резанием (фрезерованием) с целью снятия определенного припуска на обработку.

Типы фрез

В зависимости от геометрических параметров различают следующие типы фрез:

  • Цилиндрические
  • Конические
  • Торцевые
  • Концевые
  • Червячные

Большая часть всех фрез имеет отверстие в своей конструкции, благодаря которому имеет возможность одеваться на оправку. Их называют насадными .

Другая же часть фрез сравнительно небольших диаметров имеет в своей конструкции хвостовик. Такие фрезы называют концевыми . Их хвостовик может быть цилиндрическим и коническим.

При установке фрезы на станок оператору станка понадобится информация о номере конуса и типе шпинделя станка, его крепежные параметры. Все размеры, в том числе и крепёжного фланца, стандартизированы (ГОСТ 836-47).

Как правильно установить фрезу с коническим и цилиндрическим хвостовиком

Если размер хвостовика концевой фрезы совпадает с размерами конусного отверстия (гнезда) шпинделя, то в данном случае они сопрягаются без каких-либо дополнительных элементов. Хвостовик вставляют в коническую часть шпинделя и фиксируют с помощью затяжного винта. Этот способ является самым оптимальным и простым, применяется на фрезерных станках с горизонтальной и вертикальной установкой шпинделя, обеспечивая при этом достаточно простую смену фрезы .

В случае, когда размер конуса хвостовика фрезы меньше, чем конус шпинделя, для установки фрезы используют специальные переходные втулки.

Установка и закрепление концевых фрез с цилиндрическим хвостовиком осуществляется с применением цангового патрона, который способствует увеличению жесткости крепления.

Установка фрезы в цанговом патроне имеет следующий механизм действия:

  • В корпусе патрона установлена цанга, которая перемещается с закрепленным на ней цилиндрическим пальцем. На корпусе нарезана резьба, по которой осуществляется перемещение гайки при ее вращательном движении по часовой стрелке.
  • Оператор станка вставляет фрезу непосредственно в отверстие цанги, находящейся в патроне. И начинает закручивать гайку по часовой стрелке. Под воздействием упорного шарикоподшипника палец и цанга перемещаются до жесткого закрепления в ней фрезы. Цанга, установленная в патроне, позволяет надежно зафиксировать нужную фрезу, препятствует ее поломке и срыву.

Существенным преимуществом в конструкции такого патрона является:

  • Использование упорного подшипника, который обеспечивает значительное увеличение силы зажима фрезы.
  • Удобство для крепления в нём мелких фрез.
  • Достаточно прост в изготовлении.
  • Имеет небольшие габаритные размеры.

При установке фрезы в цангу необходимо:

  • Использовать зажимную цангу строго в соответствии с диаметром закрепляемого инструмента
  • Предпочтительно устанавливать фрезу по всей длине цанги, что обеспечит более надежную фиксацию. Но не менее, чем на 2/3 всей длины.
  • Выбор размера и конструкции цанги для закрепления в ней фрезы производится только в соответствии с ГОСТ17201-71.

Прежде всего нужно учитывать, что диаметр цанги должен максимально соответствовать диаметру устанавливаемой в ней фрезы для более плотного контакта.

Необходимо учитывать тот факт, что сам по себе цанговый механизм является самоцентрирующим, что обеспечивает высокую точность установки инструмента и не требует дополнительной калибровки.

Поэтому после закрепления фрезы в патроне остается проверить ее на биение. Для этого используют индикатор часового типа. Проверку этим методом осуществляют в двух случаях: при установке фрезы в шпиндель фрезерного станка, а также в случае ее переточки. Для контроля биения используют самый простой индикатор, который закреплен на штативе. Измерения фиксируют между зубьями фрезы по всей ее длине.

В процессе обработки металла фреза может работать исправно при правильной ее установке и эксплуатации. А точная ее фиксация с проверкой на биение позволяет:

  • повысить качество фрезерования;
  • увеличить производительность;
  • избежать брака в изделии;
  • снизить риски преждевременного износа.

В мелкосерийном и единичном производствах используют универсальные приспособления: прихваты, угловые плиты, призмы, машинные тиски и др.

Используют для закрепления заготовок сложной формы или больших габаритов непосредственно на столе станка. Прихваты могут быть различной формы и назначения (рис. 9.20).

Рис. 9.20.

Примеры закрепления заготовок с помощью прихватов представлены на рисунках 9.21-9.23. Все прихваты имеют овальные отверстия или выемки для крепления к столу станка и возможности перемещения прихватов относительно заготовки.

Небольшие по высоте заготовки закрепляют непосредственно па столе станка (рис. 9.21), другие - с помощью подкладок (рис. 9.22). Подкладками под прихваты являются ступенчатые подставки, бруски требуемой высоты, опоры.

Угловые плиты применяют для установки и крепления заготовок, имеющих две плоскости, расположенные под углом 90°. На рисунке 9.24 показано крепление пластины с помощью угловой плиты для фрезерования торца. При переустановках, таким образом, могут быть обработаны вес боковые поверхности. Заготовку крепят к угловой плите струбцина-

Рис. 9.21. Закрепление заготовки прихватом: 1 - стол станка;

  • 2 - обрабатываемая заготовка; 3 - прихват; 4 - болт;
  • 5 - гайка

ми, а угловую плиту - к столу станка с помощью специальных пазов.

При необходимости могут быть использованы более сложные угловые плиты, допускающие поворот относительно горизонтальной или вертикальной оси, например в тех случаях, когда обрабатываемая поверхность и поверхность закрепления образуют угол, отличающийся от 90°. Такая плита представлена на

рисунке 9.25. Для поворота вокруг горизонтальной оси на нижнем основании плиты предусмотрено поворотное устройство.

Рис. 9.22. Закрепление заготовки прихватом: 1 - стол станка;

  • 2 - обрабатываемая заготовка; 3 - подставка; 4 - прихват;
  • 5 - болт; 6 - гайка

Рис. 9.23.

прихватов


Рис. 9.24.

  • 1 - угловая плита; 2 - обрабатываемая заготовка;
  • 3 - ребро жёсткости; 4 - пазы для установки и закрепления плиты на столе станка; 5 - струбцины для крепления заготовки к угловой плите

Получили достаточно широкое распространение для крепления заготовок на фрезерных и сверлильных станках. По возможности ориентации заготовки различают тиски: простые, не имеющие возможности поворота; поворотные, осуществляющие поворот вокруг вертикальной оси; универсальные, осуществляющие поворот вокруг вертикальной и горизонтальной осей. По способу закрепления заготовки различают тиски: с одной подвижной губкой (рис. 9.26), самоцентрирующие- ся (с двумя подвижными губками), с «плавающими» губками, со специальными сменными губками (для цилиндрических заготовок и заготовок сложной формы), с ручным зажимом, пневматические и гидрав-

Рис. 9.25. Специальная угловая плита: 1 - плита для крепления заготовки;

2, 3 - поворотное устройство; 4 - пазы для крепления плиты к столу станка


Рис. 9.26.

лические (используют при необходимости зажима большой силы). На рисунке 9.27 представлены примеры специальных сменных губок, которые значительно расширяют технологические возможности использования тисков, в частности позволяют закреплять как призматические детали (рис. 9.27, а, в), так и тела вращения (рис. 9.27, б, г).


Рис. 9.27.

Для заготовок в виде тел вращения могут быть использованы специальные тиски (рис. 9.28), с призматической вставкой основанием 5 и фасонными полуовальными губками 3, 6. Вставка может переворачиваться для установки валов большого диаметра. Губки - сменные, фиксируются штифтами 2, 7. Закрепление заготовок осуществляется рукояткой 1. Такие тиски могут быть установлены как на горизонтально-фрезерных, так и на вертикально-фрезерных станках, благодаря двум опорным поверхностям.

Поворотные накладные столы используются для фрезерования фасонных поверхностей и могут иметь ручной, механический, гидравлический и пневматический привод.

На сверлильных станках кроме описанных выше универсальных приспособлений используют специальные приспособления: делительные устройства и кондукторы. Делительные устройства используются, например, для сверления одинаковых отверстий, расположенных на одном диаметре через равные промежутки. Кондукторы - это специальные приспособления, используемые для заготовок с большим количеством отверстий, имеющих высокие требования к взаимному расположению для облегчения выверки и ориентации инструмента.

Режущий инструмент па фрезерных станках базируют и закрепляют при помощи приспособлений - вспомогательного инструмента (центровых и концевых оправок, переходных втулок, установочных колец, цанговых патронов и др.).

Центровые оправки (рис. 3.46) применяют для установки цилиндрических, дисковых, угловых и фасонных фрез па горизонтально-фрезерном станке. Оправку коническим хвостовиком 2 устанавливают в коническом отверстии шпинделя и крепят натяжным винтом (тягой) 1. Для восприятия крутящего момента от сил резания прямоугольные пазы на фланце оправки совмещают с поводковыми шпонками 1 и 2 (рис. 3.47), расположенными в пазах торца шпинделя.

На цилиндрическую часть 4 (рис. 3.46) оправки со шпоночной канавкой насаживают установочные кольца 3 и фрезу. Комплект закрепляется гайкой 6. Второй сводный конец оправки поддерживается подшипником подвески, закрепляемой на хоботе (см. рис. 3.1).


Рис. 3.46.

а - с направляющей цапфой; 1 - натяжной винт (тяга); 2 - конический хвостовик (конусность 7:24); 3 - установочные кольца; 4 - цилиндрическая часть; 5 - шпонка; 6 - гайка; 7 - направляющая опора; б - с поддерживающей вращающейся буксой: 1-4, 6 - обозначения те же, что и в части а; 5 - гайка; 7 - поддерживающая букса

Рис. 3.47.

1,2 - поводковые шпонки

В подшипники подвески вводится направляющая опора 7 (см. рис. 3.46, а) или поддерживающая букса 7 (см. рис. 3.46, б).

Диаметр цилиндрической части оправки и отверстия установочных колец (от 13 до 50 мм) выбирают в зависимости от диаметра фрезы. Установочные кольца, прилагаемые к оправке, могут иметь ширину от 1 до 50 мм. Точные установочные кольца с допуском на ширину ±0,01 и ±0,013 мм применяют как промежуточные для установки заданного расстояния между дисковыми фрезами комплекта.

Концевые оправки (рис. 3.48) служат для закрепления насадных торцовых фрез на вертикально- и горизонтально-фрезерных станках. Их закрепляют в шпинделе станка так же, как и центровые оправки. Крутящий момент от сил резания концевая оправка воспринимает продольной призматической шпонкой 2 (см. рис. 3.48, а), торцовой шпонкой (рис. 3.48, б) или вкладышем 5 (см. рис. 3.48, в), который входит в торцовый паз фрезы. Последний вариант применяют для установки торцовых фрез большого диаметра с коническим посадочным отверстием.

Некоторые насадные торцовые фрезы большого диаметра крепят непосредственно на цилиндрическом буртике переднего конца шпинделя (рис. 3.49). Крутящий момент от сил резания воспринимается торцовой шпонкой 3. Шпиндель станка должен иметь четыре резьбовых отверстия (см. рис. 3.47).

Концевые фрезы 1 с коническим хвостовиком устанавливаются в шпиндель 5 станка (рис. 3.50, а), используя переходные втулки 4,

Рис. 3.48.

1 - установочный конус; 2 - шпонка; 3 - шейка для фрезы; 4 - винт; 5 - вкладыш; 6 - втулка; 7 - винт

внутренний конус которых соответствует конусу инструмента, а наружный - конусу шпинделя. Крутящий момент передается от шпинделя на ведомый фланец 2 посредством шпонки 3. Комплект закрепляется тягой 6. Концевые фрезы с цилиндрическим хвостовиком закрепляют в патроне, который своим коническим хвостовиком устанавливается в шпиндель станка. Конструкция одного из таких патронов показана на рис. 3.50, б. Фрезу устанавливают в цангу 7 и гайкой 8 закрепляют в корпусе патрона 9.

При фрезеровании пазов, точных по ширине, изношенными фрезами удобно использовать патрон (рис. 3.50, в ) с регулируемым эксцентриситетом. Фрезу закрепляют винтами 10 во втулке 13, которую устанавливают в корпус 11 и затягивают колпачковой гайкой 12. Так как ось отверстия в корпусе смещена по отношению к оси его посадочного конуса, а ось отверстия для фрезы во втулке не совпадает с осью втулки, то поворотом втулки можно смещать ось фрезы относительно оси ее вращения, изменяя ширину фрезеруемого паза.

Рис. 3.49. Закрепление фрез на шпинделе фрезерного станка: 1 - фреза; 2, 4 - винты; 3 - шпонка; 5 - шпиндель станка


Рис. 3.50.

а - с коническим хвостовиком; б - с цилиндрическим хвостовиком; в - с регулируемым эксцентриситетом; 1 - заготовка; 2 - подставка; 3 - тиски; 4 - верхняя плоскость; 5 - шпиндель; 6 - тяга; 7 - цанга; 8, 12 - гайки; 9 - патрон; 10 - винт; 11 - корпус; 13 - втулка

Рис. 3.51.

1 - фреза; 2 - гайка; 3 - патрон; 4 - винт; 5 - втулка

Значительные затраты времени связаны с затяжкой тяги при креплении инструмента, особенно на вертикально-фрезерных станках. Для сокращения этих затрат при креплении концевых фрез с коническим хвостовиком применяется патрон, показанный на рис. 3.51. В корпус патрона,?, установленного в шпинделе станка, вставляют сменную переходную втулку 5 с закрепленной в ней посредством винта 4 фрезой 1. При установке втулки в корпус патрона ее поводки проходят через соответствующие вырезы в гайке 2, навернутой на корпус 3 , и входят в пазы, имеющиеся в торце корпуса патрона. Закрепление сменной втулки в корпусе осуществляется поворотом гайки 2 на 45... 115°.

Размерную настройку при фрезеровании плоскостей инструментов выполняют методом пробных проходов (рис. 3.52). Коснувшись боковой плоскости 4 заготовки 1, установленной в тисках 3 на подставке 2, вращающейся концевой фрезой, выводят поперечной подачей заготовку из-под фрезы и поднимают стол на величину у Затем, коснувшись верхней плоскости 5, продольной подачей выводят заготовку от контакта с фрезой и поперечной подачей перемещают стол на величину А$ - А). Выполнив пробный проход (не обязательно на всей длине заготовки), измеряют полученные размеры и вводят коррекцию размерной настройки Ах = Л - А и Дг/ = - Н. Значения коррекционных перемещений

отсчитывают по лимбам поперечной и вертикальной подач.

Некоторые методы размерной настройки на расположение прямоугольного паза показаны на рис. 3.53. Положение дисковой

Рис. 3.52.

1 - тиски; 2 - заготовка; 3 - подставка; 4 - боковая плоскость; 5 - верхняя плоскость


Рис. 3.53. Методы размерной настройки на положение прямоугольного паза (а-е )

Рис. 3.54. Установка заготовок относительно фрезы при фрезеровании шпоночных пазов (а-г )

или концевой фрезы в горизонтальном направлении контролируется штангенциркулем (см. рис. 3.53, а, б) или угольником (исходное положение, см. рис. 3.53, в, г). Размерная настройка на глубину паза выполняется методом пробных проходов.

Исходные положения фрезы в горизонтальном направлении можно определить, коснувшись вращающейся фрезой вертикальной плоскости заготовки (см. рис. 3.53, д, е ).

Схема размерной настройки при фрезеровании шпоночных пазов показана на рис. 3.54. Перемещая стол в нужных направлениях, устанавливают заготовку под фрезой (см. рис. 3.54, а). Угольник располагают на столе так, чтобы его вертикальная полочка касалась боковой стороны заготовки. При помощи штангенциркуля или микрометра измеряют расстояние А. Затем, переставив угольник на другую сторону, измеряют расстояние Б. Смещение стола поперечной подачей выполняется на расстоянием = (Б-Л)/2. Тогда плоскость симметрии фрезы будет проходить через ось заготовки.

Возможен и другой способ размерной настройки дисковой шпоночной фрезы при помощи угольника (см. рис. 3.54, б). Перемещая стол поперечной подачей, совмещают угольник с торцом фрезы. Затем в обратном направлении перемещают стол на величину Н= (d- В )/2 (здесь В - ширина фрезы).

Исходные положения фрезы и заготовки можно определить путем соприкосновения торца дисковой или цилиндрической поверхности концевой (шпоночной) вращающейся фрезы с заготовкой (см. рис. 3.54, в, г). Затем стол перемещают на величину Н:

Рис. 3.55. Установка одноугловой фрезы в диаметральной плоскости: а - начальное положение; 6 - положение при смещении относительно

заготовки

H=(d + В) /2 - для дисковой фрезы; Н = (d + D )/2 - для концевой фрезы.

Аналогично осуществляют размерную настройку на начальное положение одноугловой фрезы (рис. 3.55, а), которую затем смещают относительно заготовки согласно рис. 3.55, 6.

Размерную настройку при обработке направляющих типа «ласточкин хвост» осуществляют методом пробных проходов. Однако измерение размера В (рис. 3.56) универсальным измерительным инструментом практически невозможно, а размер Л из-за заусенцев и сколов также нельзя точно измерить. Поэтому на практике

Рис. 3.56.


Рис. 3.57.

широко применяют косвенный метод с использованием гладких цилиндрических калиброванных роликов диаметром d. Тогда, если измерить размер С, размеры В и Л можно вычислить с помощью выражений

Для того чтобы соединение типа «ласточкин хвост» сопрягалось, необходимо обеспечить равенство В = (рис. 3.57). Измеряться при этом будут размеры С и С. Тогда должно соблюдаться равенство

Средства измерения для фрезерных работ приведены в табл. 3.5.

Характеристики некоторых средств измерения для фрезерных работ

Таблица 35

Инструмент

Внешний вид

измерения,

Точность

Назначение и краткая характеристика

измерительная

мм1 2 3 4 5 61 27 28 29 30 О ^ ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||1Ш _/

  • 0...150
  • 0...300
  • 0...500
  • 0...1000

Для измерения линейных размеров. Грубое измерение

Штангенциркуль

0 1 2 ЛП 7 8 9 10 11 12 13 14 15 мм® __

....................|.|imjiwi. l ln.......1щ|и...1.........1.........1.........1.........1.........1.........1.........1.........1 ® 4

Измерение наружных, внутренних размеров, глубин и высот

Штангенциркуль

Л и 1 гг "П гт-арп

Y №***?- ^ -il,I

  • 0...160
  • 0...250

Измерение наружных, внутренних размеров. Ширина губок для внутренних измерений - 10 мм. Точное измерение

З.б. Базирование, закрепление и размерная настройка инструмента

Окончание табл. 3.5

Штангеи- глубш io- мер

у// J 0 1 (3 4 5 6) 1 8 9 10 11 12 13 14 15 16 17 18 19 20

  • 0...160
  • 0...250

Измерение глубины пазов, уступов, канавок

Микрометр гладкий

0...300 с интервалом 25 мм, 300...600 с интервалом 100 мм

Для точных наружных измерений

Микрометр рычажный

Ф 1 -П II. И (ШП

-^

  • 0...25
  • 25...50

Для очень точных наружных измерений. Целые и сотые доли миллиметра отсчитываются по нониусу, а тысячные - по шкале скобы

Работа 3. Обработка заготовок фрезерованием

3 . 6 . Базирование, закрепление и размерная настройка инструмента