Атомная промышленность в россии

23.09.2019

Главной задачей ЯОК, который включает в себя атомная промышленность, является проведение политики ядерного сдерживания - защиты территории и граждан страны от ядерного оружия других стран. Для этой цели в состав комплекса включено несколько федеральных ядерных центров.

Комплекс радиационной безопасности

Защита людей и окружающей среды от радиационного воздействия - незыблемый постулат компании «Росатом».

Для достижения этой цели в состав комплекса вошли несколько предприятий, которые ежегодно решают вопросы по двум основным направлениям:

  • Обеспечение безаварийной эксплуатации действующих предприятий атомной индустрии. Здесь разрабатываются и реализуются проекты по защите ядерных реакторов от стихийных бедствий, террористических актов, а также окружающей среды от радиоактивного излучения.
  • Утилизация остатков отработанного топлива, а также ликвидация пришедших в негодность объектов «Атомного проекта» СССР.

Ежегодно для решения этих вопросов атомная промышленность получает около 150 млрд рублей.

Ядерная медицина

В сотрудничестве с федеральным медико-биологическим агентством создается комплекс ядерной медицины, который станет полностью автономным. Уже сейчас создаются ПЭТ-центры (центры позитронно-эмиссионной томографии), оборудование которых позволит выявить на ранних этапах развития опухоли, метастазы и патологические очаги.

Комплекс включает в себя лаборатории, которые занимаются нормированием изотопов и контролем качества, а также непосредственно медицинские центры, в которых проводится диагностика и лечение больных.

Ядерные технологии все прочнее внедряются в нашу жизнь. Сейчас в стране в этой области занято порядка 190 тыс. человек. И неудивительно, что Правительство РФ определило календарный день - 28 сентября, который работник атомной промышленности может считать своим профессиональным праздником.

МОСКВА, 20 авг — РИА Новости, Владимир Сычев. Российская атомная отрасль в четверг отмечает 70 лет со дня своего основания. Двадцатого августа 1945 года советское руководство постановило создать ряд организационных структур, необходимых для развития отечественной атомной промышленности.

Атомная отрасль имеет исключительное значение для России. Это надежная основа обороноспособности и национальной безопасности страны, одна из ключевых, стратегических отраслей российской экономики.

Труд и талант множества ученых, конструкторов, инженеров, строителей, управленцев, сотен тысяч простых работников обеспечили защиту страны "ядерным щитом", стали залогом мирового лидерства сначала Советского Союза, а затем России в ядерных технологиях и атомной энергетике.

История атомной отрасли России — это история блестящих научных и технических решений, сделавших ее ведущей высокотехнологичной отраслью страны. Российские атомщики сейчас выполняют новые проекты, направленные на превращение госкорпорации "Росатом" в одного из мировых инновационных лидеров. В конечном счете, успехи Росатома способствуют усилению влияния России в мире.

Начало

Аркадий Бриш: если бы мы опоздали, США могли применить ядерное оружие О том, как создавалась основа ядерного щита нашей страны, в канун 65-летия со дня испытания первого советского заряда для атомной бомбы РИА Новости рассказал участник тех работ, прославленный конструктор ядерных боеприпасов, почетный научный руководитель Всероссийского научно-исследовательского института автоматики имени Н. Л. Духова Аркадий Бриш.

Работы по освоению энергии атомного ядра велись в СССР еще до Великой Отечественной войны. Советские ученые добились тогда значительных достижений в этой области. Так, в 1939 году Юлий Харитон и Яков Зельдович впервые определили условия, при которых происходит цепная реакция деления атомных ядер урана. А в 1940 году Георгий Флеров и Константин Петржак открыли самопроизвольный распад ядер атомов урана.

Война прервала исследования советских физиков-атомщиков. Все силы ученых были направлены на помощь фронту. Но вскоре руководству страны благодаря данным разведки стало известно, что в США и Англии начаты работы по использованию атомной энергии в военных целях.

Двадцать восьмого сентября 1942 года председатель Государственного комитета обороны (ГКО) СССР Иосиф Сталин подписал распоряжение ГКО "Об организации работ по урану". В нем предусматривалось возобновление в Советском Союзе работ по исследованию и использованию атомной энергии.

В феврале 1943 года вышло постановление ГКО об организации работ по использованию атомной энергии в военных целях. Научным руководителем советского атомного проекта был назначен один из основоположников физики атомного ядра в СССР, профессор Ленинградского физико-технического института Игорь Курчатов.

В апреле того же года было подписано распоряжение по Академии наук СССР о создании под руководством Курчатова Лаборатории №2 АН СССР (ныне — Национальный исследовательский центр "Курчатовский институт").

С 1943 по 1945 год Лабораторией №2 с привлечением ряда научных институтов и предприятий страны были проведены исследования по разделению изотопов урана, разработаны технологии получения металлического урана, тяжелой воды и многое другое.

WNA: Россия лидирует в развитии технологий атомной энергетики будущего Эксперты Всемирной ядерной ассоциации (WNA) пришли к выводу, что Россия лидирует в мире в области разработки новых технологий для атомной энергетики будущего.

И все же, несмотря на выполнявшиеся работы, темпы продвижения к главной цели — созданию отечественной атомной бомбы — были недостаточными.

Ситуация резко изменилась летом 1945 года. 16 июля США испытали свой первый атомный заряд, а 6 и 9 августа подвергли атомной бомбардировке японские города Хиросиму и Нагасаки.

Для ускорения работ по созданию советского атомного оружия требовалось принимать чрезвычайные меры мобилизационного характера.

Двадцатого августа Сталин подписал постановление Государственного комитета обороны СССР о создании Специального комитета при ГКО. Новый орган был наделен полномочиями по привлечению любых ресурсов, имевшихся в распоряжении правительства СССР, к работам по атомному проекту. Главой Спецкомитета был назначен заместитель председателя ГКО и Совета народных комиссаров (СНК) СССР, нарком внутренних дел Лаврентий Берия.

Тем же постановлением предусматривалось создание "штаба" советской атомной промышленности — Первого главного управления при Совете народных комиссаров СССР. Первым руководителем ПГУ стал народный комиссар боеприпасов Борис Ванников.

Впоследствии ПГУ было преобразовано в министерство среднего машиностроения СССР — прославленный Минсредмаш. В российской истории его преемником был Минатом РФ. Сейчас всеми ядерными активами страны управляет государственная корпорация по атомной энергии "Росатом", созданная в 2007 году на базе одноименного федерального агентства.

Великий подвиг

С организацией Спецкомитета и ПГУ начался решающий этап создания советского атомного оружия.

В 1946 году в 75 километрах от Арзамаса в поселке Сарово (впоследствии город Арзамас-16, ныне город Саров) на правах филиала Лаборатории №2 было создано конструкторское бюро №11 (КБ-11, ныне — Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики). Основной задачей КБ-11 было создание заряда для атомной бомбы.

Двадцать пятого декабря 1946 года в Лаборатории №2 в Москве был пущен первый в Евразии исследовательский уран-графитовый реактор Ф-1. Создание и пуск этого реактора позволили определить оптимальную конструкцию будущего первого промышленного реактора для наработки плутония.

Первый промышленный реактор "А" построили на Южном Урале и пустили в 1948 году на комбинате №817 в городе Челябинск-40 (ныне это "Производственное объединение "Маяк", город Озерск). В состав комбината также входили радиохимический завод для выделения плутония из облученного в реакторе урана, и металлургический завод для получения изделий из металлического плутония.

Американские аналитики в то время прогнозировали, что Советский Союз в послевоенных условиях сможет создать свою атомную бомбу, вероятнее всего, лишь в 1954 году. Но они ошиблись.

Двадцать девятого августа 1949 года на Семипалатинском полигоне был успешно испытан первый советский заряд для атомной бомбы РДС-1 мощностью 20 килотонн в тротиловом эквиваленте. Тем самым была ликвидирована монополия США на обладание атомным оружием и предотвращена возможность одностороннего военного конфликта с его безнаказанным применением.

Отечественные атомщики путем колоссального напряжения сил и ресурсов в сжатые сроки совершили, без преувеличения, великий подвиг.

Имена выдающихся ученых и конструкторов Игоря Курчатова, Юлия Харитона, Кирилла Щелкина, Якова Зельдовича, Андрея Бочвара, Анатолия Александрова, Исаака Кикоина, Николая Доллежаля, Николая Духова, строителей Александра Комаровского, Василия Сапрыкина, Михаила Царевского, руководителей отрасли и ее предприятий Бориса Ванникова, Авраамия Завенягина, Михаила Первухина, Вячеслава Малышева, Павла Зернова, Бориса Музрукова, Ефима Славского навсегда вписаны золотыми буквами в историю России.

Факторы успеха

По мнению ветеранов-атомщиков и историков атомной отрасли, успех атомному проекту СССР обеспечили, в частности, четкая постановка руководством страны главных задач и проблем, требующих безотлагательного решения, концентрация интеллектуальных, материальных и финансовых ресурсов.

Аналитик: западным компаниям все сложнее конкурировать с Росатомом Неспособность иностранных компаний составить Росатому достойную конкуренцию в энергетической сфере ведет к увеличению международного влияния России, считает американский исследователь Ханна Тобурн.

К работам привлекались самые талантливые кадры. Огромную роль играл Научно-технический совет Первого главка, было обеспечено единство административного и научного руководства работами.

Кроме того, удалось достичь непрерывности цикла "исследование-разработка-производство". Создававшиеся совершенно новые лабораторные технологии обращения с ядерными материалами, прежде всего с ураном и плутонием, в кратчайшие сроки переносились на уровень отдельных предприятий.

Как правило, каждый новый этап атомного проекта начинали, не дожидаясь окончания предыдущего — это экономило время и вместе с тем свидетельствовало об уверенности руководителей отрасли в конечном успехе.

По мнению экспертов, атомный проект СССР стал первым в мире примером организации государством отдельной высокотехнологичной промышленной отрасли программно-целевым способом.

Значительную роль сыграли и данные советской разведки. С их помощью отечественные атомщики сверялись с зарубежным опытом в отношении тех идей и разработок, которые вели сами, и достигали наилучших результатов. При этом сокращались сроки освоения новых идей и технологий, избегалась ненужная трата средств. Хотя конструкция первого советского атомного заряда и копировала американскую схему, разработки, которые в дальнейшем легли в основу ядерного арсенала СССР, были целиком и полностью созданы отечественными учеными.

И, конечно же, все базировалось на высочайшей ответственности, энтузиазме и патриотизме людей, полностью отдававших себя делу, понимавших, что речь идет о защите своей родины, только что пережившей страшную войну, от еще большей угрозы.

В дальнейшем советский ядерный оружейный комплекс активно развивался. В 1953 году была успешно испытана первая советская водородная бомба РДС-6с. А в 1955 году — водородная бомба мегатонного класса РДС-37, действовавшая на новом принципе так называемого радиационного сжатия (имплозии). Тем самым были заложены основы современного отечественного стратегического ядерного оружия.

Вводились в строй новые предприятия по наработке оружейного плутония и обогащению урана. В 1955 году был основан второй российский федеральный ядерный центр в Челябинске-70, ныне Снежинске.

Созданный "ядерный щит" надежно обеспечил безопасность России. Сейчас ядерный оружейный комплекс Росатома не только работает на поддержание работоспособности и модернизацию ранее созданных зарядов, но и в условиях безъядерных испытаний обеспечивает постановку на боевое дежурство зарядов с новыми качественными характеристиками. Давно стало доброй традицией ежегодное стопроцентное выполнение Росатомом государственного оборонного заказа.

Мирный атом

СССР еще до своего первого ядерного испытания стал активное развивать направление, связанное с мирным применением атомной энергии. В 1948 году по предложению Игоря Курчатова в стране начались первые работы по практическому использованию энергии атома для получения электроэнергии. А в мае 1950 года Совет министров СССР принял постановление "О научно-исследовательских, проектных и экспериментальных работах по использованию атомной энергии для мирных целей". Главным итогом его реализации стал пуск первой в мире атомной электростанции близ станции Обнинское (сейчас — Обнинск, Калужская область). Станция дала свой первый ток 26 июня 1954 года. Она была оснащена уран-графитовым канальным реактором с водяным теплоносителем АМ ("Атом мирный") мощностью всего 5 мегаватт.

В первый период работы Обнинская АЭС рассматривалась как опытная энергетическая станция. Но с 1956 года на ней проводились исследования, необходимые, в том числе, для создания более мощных АЭС. Опыт эксплуатации первой станции полностью подтвердил инженерно-технические решения, предложенные специалистами атомной отрасли, что позволило приступить к реализации широкомасштабной программы по строительству в СССР новых атомных станций.

В 1964 году в СССР на Нововоронежской АЭС был запущен первый водо-водяной энергетический реактор ВВЭР мощностью 210 МВт. В 1973 году был введен в эксплуатацию первый в мире энергоблок с реактором на быстрых нейтронах БН-350 (город Шевченко, ныне — город Актау, Казахстан), помимо выработки электроэнергии дававший тепло для установки по опреснению воды. В том же году на Ленинградской АЭС состоялся запуск первого энергоблока с реактором РБМК мощностью 1000 МВт.

В 1980 году был пущен третий блок Белоярской АЭС с реактором на быстрых нейтронах БН-600, а также пятый энергоблок Воронежской АЭС. Его особенностью стало то, что на нем впервые был установлен реактор ВВЭР-1000. В настоящее время этот реактор — главный экспортный продукт российской атомной отрасли.

В 1991 году в СССР на 16 АЭС работало 49 энергоблоков суммарной установленной электрической мощностью около 40 гигаватт.

Советские атомщики строили АЭС и за рубежом, в странах Европы — в ГДР, Чехословакии, Болгарии, Финляндии, Венгрии.

Одним из самых главных применений мирного атома стало строительство морских судов и подводных лодок с атомными энергоустановками.

Атомные подлодки могут длительное время находиться под водой, совершая переходы на очень большие расстояния. Первая советская атомная подводная лодка "Ленинский комсомол" (К-3) проекта 627 была спущена на воду в 1957 году.

Россия — обладатель единственного в мире атомного ледокольного флота. Решение о строительстве первого атомного ледокола "Ленин" было принято в 1953 году. Корабль вошел в строй в 1959 году. В новейшей истории России были приняты в эксплуатацию суда "Ямал" и "50 лет Победы".

Атомный ледокольный флот России насчитывает шесть атомных ледоколов, один контейнеровоз и четыре судна технологического обслуживания. Его задача — обеспечивать стабильное функционирование Северного морского пути, а также доступ к районам Крайнего Севера и арктическому шельфу.

Сейчас идет строительство головного атомного ледокола "Арктика" проекта 22220. Этот корабль станет самым мощным ледоколом в истории. Его сооружение должно быть завершено в 2017 году. А до конца нынешнего года будет представлен проект российского атомного суперледокола "Лидер".

В Советском Союзе активно шли работы по созданию ядерных энергетических установок и для космических аппаратов. Первый отечественный термоэлектрический реактор-преобразователь "Ромашка" был впервые запущен в Институте атомной энергии в 1964 году, но в космосе использован не был. Следующая ядерная энергоустановка "Бук" была применена на спутниках радиолокационной разведки УС-А. Первый такой спутник был выведен на орбиту в 1970 году. Еще одна ядерная энергоустановка "Топаз" отправилась в космос в 1987 году в составе спутника "Плазма-А" ("Космос-1818").

В России с 2010 года выполняется не имеющий аналогов в мире проект создания транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса. Технические решения, заложенные в концепцию модуля, позволят решать широкий спектр космических задач, включая программы исследования Луны и исследовательские миссии к дальним планетам, создание на них автоматических баз. Проект выполняется совместно предприятиями Росатома и Роскосмоса.

Мировая экспансия Росатома

После аварии на Чернобыльской АЭС, а затем распада Советского Союза, развитие атомной отрасли затормозилось. В 1992 году министерство атомной энергии и промышленности СССР (преемник Минсредмаша) было преобразовано в Министерство Российской Федерации по атомной энергии. Ему отошло около 80% предприятий бывшего Минсредмаша и все АЭС на территории России. Начался процесс восстановления, в результате которого отрасль сумела в значительной степени сохранить накопленный потенциал и человеческие ресурсы. В марте 2004 года вместо Минатома было образовано федеральное агентство по атомной энергии "Росатом".

Но возможность успешного развития атомной отрасли в новых условиях оказалась неотделима от расширения ее присутствия на мировых атомных рынках, причем не только в сфере строительства АЭС, но и в других областях применения мирных ядерных технологий. Для решения новых масштабных задач была нужна новая отраслевая структура.

В декабре 2007 года в соответствии с указом президента России Владимира Путина была образована госкорпорация "Росатом". Этот шаг был призван создать новые условия для развития российской атомной энергетики, усилить имеющиеся у России конкурентные преимущества в этой области.

Но для того, чтобы прорваться на новые зарубежные рынки, российским атомщикам в 2000-х годах надо было доказать, что они способны браться за сложные проекты, что иностранные партнеры могут доверять нашим специалистам. С этой точки зрения не просто очень важным, а ключевым результатом эксперты называют завершение Росатомом строительства и пуск первого блока иранской АЭС "Бушер".

Никто, кроме России, не смог взяться достроить в тяжелых условиях станцию, брошенную еще в конце 1970-х годов специалистами ФРГ. "Атомстройэкспорт" и его подрядчики, без преувеличения, совершили настоящее технологическое чудо, вписав российское оборудование в уже построенную по немецкому проекту часть станции и применив многие тысячи тонн немецкого же оборудования.

В РФ за последние несколько лет были пущены второй и третий блоки Ростовской АЭС, четвертый блок Калининской АЭС (все — с реакторами ВВЭР-1000), а также четвертый блок Белоярской АЭС с реактором на быстрых нейтронах БН-800.

В настоящее время в промышленной эксплуатации в России находятся 33 энергоблока на десяти АЭС. Готовится к сдаче в промэксплуатацию третий блок Ростовской станции.

На Нововоронежской АЭС-2 и Ленинградской АЭС-2, а также на Белорусской АЭС идет строительство энергоблоков с реакторами ВВЭР-1200 по новому проекту АЭС-2006 с улучшенными технико-экономическими показателями. В будущем начнется строительство энергоблоков с реакторами ВВЭР-1300 по конкурентоспособному типовому проекту ВВЭР-ТОИ, сочетающему высокий уровень безопасности и технико-экономических показателей.

Сейчас на Балтийском заводе в Санкт-Петербурге идет строительство первой в мире плавучей атомной теплоэлектростанции, ее планируется сдать в 2016 году. Эта станция будет использоваться на Чукотке, где заместит выбывающие мощности Билибинской АЭС.

Заслуженное признание

Сейчас Росатом — мировой лидер по числу атомных энергоблоков, одновременно сооружаемых за рубежом. В настоящее время в портфеле Росатома — гарантированные заказы на 29 атомных энергоблоков в странах Европы, Ближнего Востока и Азиатско-Тихоокеанского региона. Обсуждается возможность строительства еще примерно 30 блоков. У госкорпорации и первое место по количеству проектируемых блоков АЭС.

По итогам 2014 года десятилетний портфель зарубежных заказов госкорпорации вырос до 101,4 миллиарда долларов, этот показатель к 2020 году планируется нарастить в полтора раза.

РФ до сентября поставит новую партию ядерного топлива на АЭС "Бушер" Партия топлива для первого блока АЭС "Бушер" в Иране изготовлена на Новосибирском заводе химконцентратов в соответствии с контрактными обязательства российской стороны, заявили в пресс-службе топливной компании госкорпорации "Росатом" ТВЭЛ.

За последние годы багаж Росатома пополнили проекты по возведению новых блоков АЭС "Бушер", АЭС "Ханхикиви-1" в Финляндии, первой АЭС в Иордании, достройке венгерской АЭС "Пакш".

Успехи Росатома признаны в мире. Так, проекты по достройке АЭС "Бушер" и сооружению первого блока индийской АЭС "Куданкулам" были названы проектами 2014 года по версии старейшего энергетического журнала США Power Engineering в номинации "Атомная энергетика".

Аналитики из западных стран отмечают, что их компаниям все труднее конкурировать с Росатомом, давно считающимся очень надежным и ответственным поставщиком ядерных технологий. В качестве основных преимуществ российской госкорпорации называются ее высокая степень интегрированности, поддержка со стороны государства и комплексное предложение зарубежным партнерам.

Росатом — единственная компания в мире, способная предоставить весь спектр услуг в области атомной энергетики. Речь идет не только о строительстве АЭС в соответствии с самыми современными требованиями безопасности, снабжении их ядерным топливом и выводе из эксплуатации, но и о подготовке национальных кадров, развитии научно-исследовательских работ, технологий ядерной медицины, содействии в создании необходимой нормативно-правовой базы.

По существу, Росатом готов "с нуля" создавать атомные отрасли в отдельных странах, помогая своим партнерам совершить технологический рывок.

Свидетельством растущего интереса к российским ядерным технологиям, прежде всего со стороны стран-новичков в области атома, стал прошедший в июне нынешнего года в Москве международный форум "Атомэкспо-2015". На него съехалось рекордное число участников — более 2,2 тысячи делегатов из 47 стран, что в полтора раза больше, чем год назад. Хотя в нынешней непростой геополитической ситуации ждать такого результата, казалось бы, не приходилось.

Впрочем, сами атомщики сочли рекорд закономерным. "Это особенность атомной отрасли, атомной энергетики. Время технологического цикла в атомной отрасли таково, что оно по определению значительно больше и несопоставимо с краткосрочными циклами политической конъюнктуры", — сказал тогда генеральный директор Росатома Сергей Кириенко.

Технологии будущего

Зарубежные специалисты особо отмечают и технологические направления атомной энергетики будущего, где российские специалисты сейчас находятся впереди всех.

Это, прежде всего, разработка и строительство реакторов на быстрых нейтронах. Энергоблоки с такими реакторами могут помочь существенно расширить топливную базу атомной энергетики, а также минимизировать объемы радиоактивных отходов за счет организации замкнутого ядерно-топливного цикла.

Технологиями создания "быстрых" реакторов обладают очень немногие страны, и Россия лидирует в мире в этом направлении. Коммерческими технологиями в этой области РФ будет обладать к 2025 году, заявил Сергей Кириенко на "Атомэкспо-2015".

Сейчас на Белоярской АЭС идет подготовка к началу выработки электроэнергии четвертым блоком с реактором БН-800. Он должен стать прототипом коммерческих, более мощных энергоблоков с реакторами БН-1200, которые планируется использовать в атомной энергетике будущего.

А Сибирский химический комбинат в Северске стал местом реализации проекта "Прорыв", в котором планируется отработать технологии замыкания ядерного топливного цикла. В ходе этого проекта будет создан опытно-демонстрационный энергокомплекс. В его состав войдут реактора на быстрых нейтронах со свинцовым жидкометаллическим теплоносителем БРЕСТ-ОД-300, а также завод по производству смешанного нитридного уран-плутониевого топлива для этого реактора и завод по переработке отработавшего топлива. Полностью "Прорыв" планируется запустить в 2023 году.

В реакторе БН-800 будет использоваться смешанное оксидное уран-плутониевое МОКС-топливо. Оно будет выпускаться на Горно-химическом комбинате в Железногорске. Это предприятие стало и площадкой для отработки не имеющих аналогов в мире технологий безопасного обращения с отработавшим ядерным топливом.

На ГХК работает единственное в мире "сухое" хранилище отработавшего ядерного топлива реакторов АЭС, охлаждаемое воздухом. Такой способ гораздо безопаснее и экономически эффективнее технологий хранения отработавшего топлива, применяемых за рубежом.

В конце нынешнего года на ГХК планируется ввести в эксплуатацию пусковой комплекс самого современного в мире опытно-демонстрационного центра, в котором будут отрабатываться новейшие технологии переработки ОЯТ, необходимые для замыкания ядерного топливного цикла. Их особенностью будет полное отсутствие жидких низкоактивных радиоактивных отходов. Таким образом, у российских специалистов появится уникальная возможность доказать на практике, что переработка ядерных материалов возможна без ущерба для окружающей среды.

Передовая наука

Атомный проект оказал огромное влияние на темпы научного развития Советского Союза, способствовал ускорению развития самых разных областей — материаловедения, вычислительной математики и ЭВМ, физики высоких давлений и температур, физики элементарных частиц и ускорителей.

Собственный громадный научно-технический потенциал — одна из самых главных особенностей атомной отрасли. В России не было и нет ни одного другого промышленного направления, в котором работало хотя бы приблизительно такое же количество ученых, как в атомной сфере. Ученые Росатома получают фундаментальные результаты мирового уровня, а также выполняют практические разработки.

Так, специалисты федерального ядерного центра в Сарове первыми в мире смогли сжать плазму гелия и дейтерия при экстремально высоких давлениях — до 50 миллионов атмосфер. Полученные результаты о происходящих при этом процессах важны, в частности, с точки зрения выяснения особенностей явлений, протекающих в глубинах планет и звезд.

Еще одно достижение саровского центра относится к лазерной технике — газовый лазер нового типа с повышенным коэффициентом полезного действия. Речь идет о лазере киловаттного уровня на парах цезия с так называемой диодной накачкой. Достигнутый КПД этого лазера составляет почти 50%. Прибор может использоваться в лазерной локации, в системах наведения излучения, в технологических и медицинских лазерных установках. Аналогов этой установке в мире нет.

Одно из главных исследовательских направлений российских атомщиков — создание новых конструкционных материалов для атомной энергетики. Ранее консорциум научно-исследовательских центров в РФ завершил исследования, подтвердившие работоспособность новых российских сплавов, применение которых позволит продлить жизненный цикл атомных энергоблоков почти до ста лет.

Росатом совершенствует свою исследовательскую базу, которой смогут пользоваться и его зарубежные партнеры. В Научно-исследовательском институте атомных реакторов в Димитровграде будет построен крупнейший в мире многоцелевой исследовательский ядерный реактор на быстрых нейтронах МБИР. На базе нового реактора планируется создать Международный центр исследований, где, в частности, будут изучаться новые виды ядерного топлива, конструкционные материалы и теплоносители. Также реактор будет использоваться в производстве радиоизотопов для медицинских целей и терапии тяжелых заболеваний.

Яркий пример успешного сотрудничества ученых Росатома со своими зарубежными коллегами — проект создания международного термоядерного реактора ITER во Франции. На долю России приходится примерно 10% от общей стоимости проекта, которые будут инвестированы в форме высокотехнологичного оборудования. Так, в 2015 году РФ по плану завершает поставки сверхпроводящих кабелей для проекта.

Ранее сообщалось, что только Россия и Китай идут в графике по этому проекту, а западные страны сильно отстают. А генеральный директор ITER Бернар Биго отмечал, что российские специалисты вносят основной вклад в этот проект.

Юбилейные торжества

Юбилейные мероприятия сейчас проводятся на предприятиях Росатома в разных городах России.

Росатом покажет "Кузькину мать" на выставке в Москве Посетители выставки "70 лет атомной отрасли. Цепная реакция успеха" смогут увидеть своими глазами копию самой мощной в истории термоядерной бомбы, известной как "Кузькина мать" или "Царь-бомба".

В столице в сентябре в Манеже состоится масштабная культурно-историческая выставка "70 лет атомной отрасли. Цепная реакция успеха". Выставочное пространство будет условно разделено на ряд тематических экспозиционных зон, представляющих собой единый комплекс пространственно-архитектурных инсталляций, посвященных основным вехам развития отрасли.

Организаторы выставки задействуют самые современные технологии, благодаря которым посетители смогут почувствовать сопричастность к тем событиям и людям, о которых будут повествовать экспонаты. Кроме того, гости смогут узнать о современном состоянии и перспективах развития отрасли.

На выставку из музеев и архивов предприятий отрасли привезут большое количество редких экспонатов, в том числе никогда ранее не выставлявшихся в столице. "Гвоздем программы" станет копия самой мощной в истории термоядерной бомбы АН-602, испытанной в СССР в 1961 году. Ее доставят из музея саровского ядерного центра.

А главные юбилейные торжества пройдут в Москве 28 сентября в День работника атомной промышленности.

Современная ядерная индустрия - продукт освоения явления радиоактивности, приспособленный к промышленным нуждам через такие науки, как ядерная физика и радиохимия.

Ядерная индустрия (ЯИ) - отрасль промышленности, связанная с использованием ядерной энергии; совокупность технологий, предназначенных для целесообразного использования ядерной энергии.

Атомная промышленность - совокупность предприятий и организаций, связанных организационно и технологически, производящих продукцию, работы и услуги, применение которых основано на использовании ядерных технологий, и достижений ядерной физики и радиохимии.

Ядерные технологии - совокупность инженерных решений, позволяющих использовать ядерные реакции или ионизирующее излучение. Сферы применения: ядерная энергия, ядерная медицина, ядерное оружие. Включают в себя направления: технологии, оаюванные на способности некоторых химических элементов к делению или слиянию с выделением энергии; технологии, основанные на получении и использовании ионизирующих излучений; технологии получения веществ с требуемыми свойствами.

Ядерная энергия - внутренняя энергия атомных ядер, выделяющаяся при некоторых ядерных превращениях. В миллионы раз превосходит энергию, выделяющуюся при химических реакциях.

Ядерная энергетика (атомная энергетика) - отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Ядерную энергию можно конвертировать в тепловую (и электрическую) в процессах радиоактивного распада, аннигиляции вещества с антивеществом, ядерных реакциях деления тяжёлых ядер, или в реакциях синтеза лёгких ядер.

Естественная радиоактивность демонстрирует наличие больших энергетических ресурсов, запасённых в атомных ядрах (например, при полном превращении 1 кг радия выделяется 3,5-Ю 5 кВт-ч энергии). Однако из-за малой скорости распада полезная мощность незначительна. Использование ядерной энергии стало возможным благодаря открытию самопод- держивающихся ядерных реакций: цепных реакций деления и термоядерных реакций синтеза. При делении ядер 1 кг урана выделяется 2-ю 7 кВт-ч энергии, что эквивалентно сжиганию 2500 тонн каменного угля.

Особенно эффективным является использование цепных процессов деления тяжёлых ядер. В настоящее время осуществлены как неуправляемые цепные реакции взрывного типа (атомная бомба), так и управляемые реакции с регулируемым уровнем выделения энергии (атомные реакторы). Ядерная энергия, подущаемая в ядерных цепных реакциях деления, используется на атомных электростанциях, военных кораблях, транспортных судах, космических аппаратах, кардиостимуляторах и т.п. Ядерная энергия, выделяющаяся при реакциях термоядерного синтеза, играет огромную роль в природе, т.к. является основным источником энергии Солнца и звёзд. В настоящее время удалось осуществить неуправляемые термоядерные реакции взрывного типа (водородная бомба). Управляемую термоядерную энергию осуществить достаточно просто (например, облущая дей- терид лития тепловыми нейтронами), но добиться превышения энергетического выхода над затратами, пока не удалось. Есть ещё один, потенциально более мощный, чем термоядерные реакции, источник ядерной энергии - аннигиляция частиц и античастиц. В этом случае изменение массы покоя близко к юо%. Реализовать этот способ получения энергии тоже пока не удалось.

Структура атомной промышленности включает ядерный энергетический комплекс, ядерный-оружейный комплекс, атомный ледокольный флот, ядерную медицину, научно-исследовательские институты.

В настоящее время ядерная индустрия это:

  • 1. Производство компонентов ядерного оружия (оружейные изотопы: уран, плутоний, тритий; заряды атомных, водородных, нейтронных и радиационных бомб).
  • 2. Оборудование для испытания компонентов ядерного оружия (полигоны, стенды, компьютеры).
  • 3. Оборудование для демонтажа ядерного оружия и утилизации его компонентов (обратные технологии).
  • 4. Горно-металлургические предприятия по добыче урана и тория, обогащения руд, производства чистых соединений топливных нуклидов, изотопного обогащения урана, ядерного топлива, конструкционных и функциональных материалов.
  • 5. Ядерные реакторы (промышленные, исследовательские, энергетические и транспортные (корабельные, самолетные, ракетные)), реакторы для радиационного материаловедения, химического синтеза, опреснения морской воды.
  • 6. Химико-технологическое оборудование для переработки отработанного ядерного топлива.
  • 7. Термоядерные установки и химико-технологическое оборудование для производства компонентов топлива для них;
  • 8. Ускорители и вспомогательная аппаратура для производства радионуклидов и модификации материалов.
  • 9. Производство радиоактивных изотопов и меченых соединений для науки, техники, медицины, сельского хозяйства и т.п.

ю. Источники различных видов излучений для технологических, радиационно-химических, медицинских и сельскохозяйственных целей).

  • 11. Приборы и методики использования радиоактивных изотопов в технике, химии, материаловедении, биологии, физиологии, медицине, геологии, сельском хозяйстве, археологии и т.п.
  • 12. Методы и средства защиты персонала от излучения, а также системы обеспечения безопасности населения и окружающей среды.
  • 13. Оборудование для регистрации ионизирующего излучения и мониторинга радионуклидов и радиационных полей в среде обитания человека, в самом человеке, а также в предприятиях по охране труда и безопасности жизнедеятельности.
  • 14. Оборудование для переработки и захоронения отходов (установки для отверждения отходов, хранилища, могильники, полигоны для захоронения отходов; оборудование по демонтажу и утилизации отработавших свой срок ядерных энергетических установок).

Центральной частью ядерной индустрии является ядерный топливно-энергетический комплекс (ЯТЭК), основными продуктами которого являются компоненты ядерного оружия, а побочными - электрическая энергия, тепло, пресная вода, продукты радиационного синтеза (например, водород) или радиационно-термической модификации материалов. К сфере ЯТЭК относится ядерная энергетика, топливная база и ядерное машиностроение. В него входят предприятия добычи и переработки урановых и ториевых руд, конверсии урана, изотопного обогащения его, изготовления топлива для ядерных реакторов, ядерного машиностроения, АЭС, ядерные станции теплоснабжения, исследовательские ядерные установки и т.д. Ключевой проблемой функционирования ЯТЭК является обеспечение безопасности производства (в первую очередь - работников предприятия), населения и природных экосистем.

Важными компонентами ЯТЭК являются: l) производство оружейных нуклидов (высокообогащённый уран, плутоний, тритий), 2) ядерный топливный цикл атомной энергетики, и з) радиохимическое обеспечение управляемого термоядерного синтеза.

Ядерный топливный цикл (ЯТЦ) - комплексядерно-химических производств, направленных на переработку и утилизацию отработанного ядерного топлива. Основная задача - обеспечение повторного использования отработанного ядерного топлива на атомных установках в ТВЭЛ ах после специальной обработки.

ЯТЦ включает следующие компоненты:

  • - добыча руды (уран, торий), её первичная обработка (измельчение и т.п.), обогащение руды, получение концентратов (диоксида урана и радиоактивных отходов, идущих в отвал) и их химическая очистка;
  • - изотопное обогащение сырья (например, преобразование диоксида урана в газообразный гексафторид урана, разделения изотопов урана, обогащение урана по изотопу 2 35Ц);
  • - производство топлива для реакторов (обратное превращение гексафторида урана в диоксид урана в виде топливных таблеток; таблеток высокие требования к чистоте веществ, недопустимость достижения критической массы; изготовление тепловыделяющих элементов и компоновка их в тепловыделяющие сборки);
  • - выработка энергии на ядерной энергетической установке (загрузка топлива в реактор; высокая концентрация мощности, точное и быстрое управление процессом, очень мощные потоки проникающих излучений);
  • - извлечение и первичное хранение отработанного топлива; транспортировка на перерабатывающее предприятие;
  • - переработка отработанного топлива (извлечение делящихся радионуклидов и возвращение их в топливный цикл, извлечение и очистка стабильных и радиоактивных изотопов, выделение долгоживущих радионуклидов, предотвращение хищения оружейных материалов);
  • - переработка рафината процесса переработки отработавшего ядерного топлива; трансмутация экологически вредных радионуклидов: отверждение и захоронение отходов;
  • - после окончания срока работы ядерного реактора - вывод его из эксплуатации, демонтаж, дезактивация и удаление в отходы деталей реактора.

Важной частью ядерной индустрии является атомная энергетика Стратегическая цель атомной энергетики - овладение ресурсами природного топлива - и 2 32ТЬ (в основном, путём наработки в ядерных реакторах нейтронах 2 39Ри или 2 ззЦ). Друтой стратегической задачей является отработка ядерных методов уничтожения экологически опасных радионуклидов. Тактическая цель - использование ядерных реакторов для производства электроэнергии, тепла, пресной воды, водорода и радиоизотопов для науки, техники и медицины.

В настоящее время реализованы три способа получения атомной энергии: l) На основе спонтанного деления радиоактивных искусственных изотопов. Радиоизотопные источники энергии (маломощные установки) используются для обогрева аппаратуры и для электро генерации. 2) На основе управляемой цепной реакции деления тяжелых ядер. Сейчас это единственная ядерная технология, обеспечивающая экономически оправданную промышленную генерацию электроэнергии на атомных электростанциях. з) На основе реакции синтеза легких ядер. Несмотря на хорошо известную физику процесса построить экономически оправданную электростанцию пока не удалось.

Обычно для получения ядерной энергии используют цепную ядер- ную реакцию деления ядер 2 39Ри или 2 35U. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с друтими атомами эта кинетическая энергия быстро преобразуется в тепло.

Ядерная энергетика используется для производства электроэнергии для населения с 1954 года. Загрязнение, создаваемое атомной энергетикой невелико, парниковые газы не нарабатываются. Правильно сконструированные и эксплуатируемые АЭС оказались надежными, безопасными, экономически и экологически привлекательными.

В 2013 г. мировое производство ядерной энергии составило 6,66 млрд. МВт.ч (562,9 млн. т. нефтяного эквивалента), т.е. -11% от всемирной генерации электричества. В 2014 г. в мире насчитывалось 439 энергетических реакторов общей мощностью 376,821 ГВт, 67 реакторов находилось в стадии сооружения. Мировым лидером по установленной мощности является США, однако ядерная энергетика составляет лишь 20% в общем энергобалансе этой страны. Мировым лидером по доле в общей выработке является Франция, в которой ядерная энергетика является национальным приоритетом - 77%. Половина всемирной выработки электроэнергии на АЭС приходится на США и Францию.

В мире эксплуатируется несколько типов реакторов: PWR (водоводяной ядерный реактор, в России - ВВЭР, в Китае CNP ), BWR - корпусной кипящий реактор, PHWR - тяжёловодный ядерный реактор (CANDU ), GCR - газоохлаждаемый реактор (Magnox), LWGR - графито-водный ядерный реактор, в России РБМК, FBR - реактор-размножитель на быстрых нейтронах, в России БН-боо и БН-800, HTGR - высокотемпературный газоохлаждаемый реактор, HWGCR - тяжеловодный газохлаждаемый реактор, HWGCR - тяжеловодный водоохлажаемый реактор, SGHWR - кипящий тяжеловодный реактор.

Из общего числа находящихся в эксплуатации энергетических реакторов -82% - реакторы с легководным замедлителем и легководным теплоносителем; п% - реакторы с тяжеловодным замедлителем и тяжеловодным теплоносителем; 3% - газоохлаждаемые реакторы и 3% - водоохлаждаемые реакторы с графитовым замедлителем. Есть два реактора на быстрых нейтронах с жидкометаллическим замедлителем и жидкометаллическим теплоносителем (китайский экспериментальный быстрый реактор (CEFR ) мощностью 20 МВт (эл.) и российский реактор БН-боо мощностью 560 МВт (эл.).

Рис. 1. Статистика строительства атомных электростанций в мире: 1 - установленная мощность; 2 - реализованная мощность.

Согласно низкому прогнозу МАГАТЭ от 2011 г. общемировая мощность АЭС возрастет до 501 ГВт (эл.) в 2030 г. а согласно высокому прогнозу - до 746 ГВт (эл.).

Вероятно, мировой спрос на энергию и электричество будет в ближайшие десятилетия возрастать. Рост численности населения в мире и надежды на развитие, свойственные развивающимся странам, где значительная доля населения по-прежнему не имеет доступа к электричеству, ведут к высоким темпам роста спроса на электроэнергию. Этот спрос, возможно, будет удовлетворяться атомной энергетикой.

По суммарной мощности действующих АЭС Россия занимает третье место в мире, уступая США и Франции. На 2015 г. на ю АЭС эксплуатировалось 35 энергоблоков мощностью 26,2 ГВт (выработка 1049 млрд кВт ч, доля в общем производстве электроэнергии 18,6%, в Европейской части страны доля атомной энергетики достигает 30 %, а на Северо-Западе - 37%), из них 18 реакторов с водой под давлением - 12 ВВЭР-юоо, 6 ВВЭР- 440, 15 канальных кипящих реакторов - и РБМК-юоо и 4 ЭПГ-6; 2 реактора на быстрых нейтронах - БН-боо и БН-800. На конец 2015 г. в стадии строительства находилось 6 энергоблоков (строительство Балтийской АЭС в Калининградской области приостановлено) и 2 блока на Плавучих атомных электростанциях малой мощности.

Россия является одной из ведущих стран мира в области ядерной энергетики, занимая 17 % глобального рынка ядерного топлива, 40% рынка услуг по обогащению урана, 5е место в мире по добыче урана. По проектам и силами советских специалистов в разных странах были построены АЭС - всего 31 энергоблок общей мощностью 16 ГВт. Россия построила и ввела в эксплуатацию несколько энергоблоков, в том числе два блока Тяньвань- ской АЭС в Китае и Бушерской АЭС в Иране.

Атомная промышленность России насчитывает более чем 250 предприятий и организаций, в которых занято свыше 190 тыс. человек.

В России ядерной промышленностью управляет Государственная корпорация по атомной энергии «Росатом».

Госкорпорация «Росатом» - государственный холдинг, объединяющий более 360 предприятий атомной отрасли. В состав «Росатома» входят все гражданские атомные компании России, предприятия ядерного оружейного комплекса, научно-исследовательские организации, а также атомный ледокольный флот. Госкорпорация является одним из лидеров мировой атомной промышленности, занимает второе место в мире по запасам урана и пятое по объёму добычи, четвёртое место в мире по производству атомной энергии, контролирует 40% мирового рынка услуг по обогащению урана и 17% рынка ядерного топлива. «Росатом» - некоммерческая организация; в её задачи входит как развитие атомной энергетики и предприятий ядерного топливного цикла, так и обеспечение национальной, ядерной и радиационной безопасности, а также развитие прикладной и фундаментальной науки. Кроме того, госкорпорация уполномочена от имени государства выполнять международные обязательства России в области использования атомной энергии и режима нераспространения ядерных материалов.

Основными являются следующие компании: ФГУП «Росэнергоатом» объединяет все атомные электростанции России; ТВЭЛ - компания, производящая ядерное топливо; ОАО «Техснабэкспорт» выпускает и экспортирует материалы и технологии, используемые в атомной промышленности; «ЗиОПодольск» поставляет энергетическое оборудование для атомных и тепловых станций; «Ижорские заводы» - атомные реакторы и широкая гамма машиностроительной продукции, причём как для внутреннего рынка, так и на экспорт; Завод имени Дегтярёва (ЗиД, город Ковров) выпускает два основных вида продукции: центрифуги для разделения изотопов урана и оружие; Атомстройэкспорт - главный подрядчик при строительстве АЭС за рубежом.

Помимо АЭС существуют комбинированные ядерно-энергетические установки, производящие электрическую энергию и тепло. В настоящее время насчитывается 79 реакторов, работающих в режиме комбинированного производства, и развитие этого направления считается перспективным. Чем на большем числе объектов удаётся использовать тепло, получаемое от АЭС, тем большую пользу приносит электростанция. Кроме того, там, где ресурсы морской воды являются доступными, а ресурсы пресной воды ограниченными, опреснение морской воды обеспечивает как питьевую воду, так и дешёвую воду для самой АЭС.

Ядерные реакторы используются как источники электрической и тепловой энергии на космических аппаратах.

Неэлектрические применения включают производство водорода для: i) улучшения качества низкокачественных нефтяных ресурсов, таких как нефтяной песок, с нейтрализацией при этом выбросов утлерода, сопровождающих паровой риформинг метана (превращение углеводородов с помощью пара и тепла в газообразные продукты, в первую очередь, в СО и Н 2); 2) обеспечения производства синтетических видов жидкого топлива на основе биомассы, угля или друтих источников утлерода; 3) использования в качестве топлива транспортных средств с целью подключения к электросети в облегченном режиме двигателей на водородных топливных элементах. Ядерная энергия может также использоваться в нефтяной промышленности для извлечения битума с использованием парогравитационной технологии или сухой перегонки горючего сланца.

Плавучая атомная электростанция (плавучая атомная теплоэлектростанция, ПЛТЭС) - российский проект по созданию мобильных плавучих атомных электростанций малой мощности.

ПАТЭС - гладкопалубное несамоходное судно. Производит электричество, пар для отопления и пресную воду (опреснение морской воды). Такие станции предназначены для поставки энергии в отдалённые районы. Плавучая атомная теплоэлектростанция «Академик Ломоносов» (спущена на воду, ходовые испытания начаты в 2016) имеет длину 144 м, ширину - 30 м, водоизмещение - 21500 т. Снабжена двумя реакторными установками КЛТ-40С ледокольного типа. Электрическая мощность каждого реактора - 35 МВт, тепловая мощность - 140 гигакалорий в час. Срок эксплуатации 36 лет.

Атомный флот - совокупность военных кораблей различных классов, имеющих в качестве источника энергии ядерные силовые установки. Корабли атомного флота обладают практически неограниченной дальностью плавания, большой автономностью, способны длительное время идти с большими скоростями хода и решать боевые задачи в любом районе Мирового океана.

Ядерные реакторы используются как двигатели в надводных (авианосцы, крейсера) и подводных (атомные подводные лодки, АПЛ) кораблей. В России построено 4 атомных крейсера («Адмирал Нахимов», «Адмирал Лазарев», «Адмирал Ушаков», «Петр Великий») и один атомный корабль связи «Урал». Россия обладает достаточно большим числом ракетных подводных крейсеров стратегического назначения.

Россия обладает единственным атомным ледокольным флотом в мире. В 2016 г. в состав действующего флота входили атомоходы «Советский Союз», «Ямал», «50 лет Победы», «Таймыр» и «Вайгач», а также атомный лихтеровоз-контейнеровоз «Севморпуть». В 2016 г. на воду спущен ледокол "Арктика", который станет самым мощным ледоколом в мире.

В настоящее время разрабатывается универсальный двухосадочный ледокол нового поколения, который сможет выполнять ледокольные проводки, как по морям, так и по глубоководным рекам.

В некоторых странах строятся экспериментальные грузовые корабли. Однако крупнотоннажные и высокоскоростные атомные суда получат распространение только после того, как будет найдено решение проблемы захода в порты.

В авиации и танкостроении ядерные двигатели не используются, но есть проекты космических ядерных двигателей. В России ведутся работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем.

Помимо энергетических реакторов в мире эксплуатируется 250 исследовательских реакторов, используемых для производства радионуклидов для промышленных и медицинских целей, проведения ядерных исследований, испытания материалов и проведения различных экспериментов, для коммерческих услуг, таких как легирование кремния, нейтронноактивационный анализ, улучшение свойств драгоценных камней и неразрушающие испытания, а также для подготовки специалистов. Как правило, они работают на топливе, высокообогащённом (выше 30% - уран, годный к оружейному использованию). Для сокращения глобальной угрозы предпринимаются усилия по переводу топлива исследовательских реакторов на низкообогащённый (~5%) уран, НОУ. Новое уран-молибденовое топливо для высокопродуктивных исследовательских реакторов обладает весьма высокой плотностью.

Промышленных установок, работающих на реакции термоядерного синтеза в настоящее время не существует. Однако 5 стран страны Евросоюза объединили усилия по строительство Международного реактора, ИТЭР, типа Токамака, на котором ожидается достижение выхода, превышающего энергетические затраты.

Ядерная промышленность выпускает ускорители различных частиц. В 20Ю г. в мире эксплуатировалось 163 электростатических ускорителя, 9 источников нейтронов скалывания и 50 источников синхротронного излучения. Современные ускорители используются в областях медицинской радиационной физики, радиобиологии, экспериментальной ядерной физики, сельского хозяйства, процессов стерилизации, материаловедения, изучения артефактов культурного наследия и охраны окружающей среды. Мишени источников нейтронов скалывания, используемые на ускорителях большой мощности, обеспечивают получение полезной информации о радиационных повреждениях в системах, управляемых ускорителем, в том числе в предназначенных для трансмутации ядерных отходов и производства электроэнергии. Получаемая информация используется при проектировании мишеней большой мощности с длительным сроком службы в системах, управляемых ускорителем.

Ядерные технологии используются в технике, сельском хозяйстве, медицине и охране окружающей среды.

Например, меченные радиоизотопом нуклеотидные зонды позволили установить последовательности полного генома домашних животных, что обеспечило прогресс в анализе генетического разнообразия пород крупного рогатого скота, овец и коз в целях улучшения селекции животных для повышения их продуктивности. В результате повышена эффективность производства мяса и молока. Ранняя диагностика болезней животных при использовании ядерных методов важна для повышения продовольственной безопасности. Молекулярные ядерные технологии позволяют проводить диагностику птичьего или свиного гриппа в течение суток, тогда как на традиционную диагностику уходит неделя. Ядерные методы в области борьбы с насекомыми-вредителями не ограничиваются применением гамма-облучения в целях стерилизации насекомых но включают использование изотопов для исследования биологии, поведения, биохимии, экологии и физиологии насекомых. Облучение пищевых продуктов - метод борьбы с микроорганизмами, вызывающими заболевания пищевого происхождения. Применение облучения к свежим овощам, фруктам и замороженным пищевым продуктам не влечет за собой изменений их вкуса или консистенции.

Для повышения урожайности сельскохозяйственных культур используется индуцирование мутаций, осуществляемое двумя методами: ионно-пучковой имплантацией, открывающей возможность для изотопного распада внутри клетки, и селекцией в космосе (за пределами земной атмосферы), когда космические лучи проходят сквозь клетку. Повышение эффективности за счет мутационной селекции на основе генетических методов направлено на повышение качества сортов сельскохозяйственных культур, в результате чего увеличится производство продовольствия.

Наличие почвенной воды для сельскохозяйственных культур зависит от масштабов потерь воды с оголенных почв (т.е. испарения) и транспирации листьев растений. Для повышения эффективности использования воды для орошения важно количественно определить два этих компонента потерь воды. Сделать это, однако, трудно. Стабильные изотопы в воде (18 0 и 2 Н) эффективно используют для изучения этих процессов: испарение с поверхности почвы ведёт к обогащению изотопного состава почвенных вод этими изотопами. Транспирация же растений, напротив, не сказывается на изотопном составе почвенных вод. Полученная информация используется для разработки технологий управления земельными и водными ресурсами в различных средах. Удержание органического утлерода в почве снижает содержание С0 2 в атмосфере, смягчая последствия изменения климата. Для изучения процессов секвестрации и фотосинтеза применяются радиоактивные (чС) и стабильные ОзС) изотопы утлерода. Результаты исследований позволяют предложить мероприятия по смягчения последствий изменения климата и обеспечить устойчивое производство продовольствия.

Дефицит питательных микроэлементов, "скрытый голод", оказывает воздействие на большую долю населения планеты, в особенности на младенцев, детей и женщин фертильного возраста в развивающихся странах. Дефицит витамина А, цинка и железа - причина замедленного роста в раннем возрасте и плохого здоровья детей. В качестве неотъемлемой части разработки и оценки вмешательств для борьбы с дефицитом питательных микроэлементов применяются ядерные методы, позволяющие оценить биодоступность питательных микроэлементов.

Перспективная область медицины - диагностическая визуализация. Это методы, точно определяющие анатомические подробности, и методы, обеспечивающие получение функциональных или молекулярных изображений. В первой категории относят компьютерную томографию (КТ) и магнитно-резонансную визуализацию (МРТ), которые определяют структурные изменения до миллиметрового уровня. Вторая категория включает позитронно-эмиссионную томографию (ПЭТ) и однофотонную эмиссионную компьютерную томографию (ОФЭКТ), исследующие заболевания вплоть до молекулярного уровня. Развитие технологии позволило объединить анатомические и функциональные методы в гибридные системы визуализации, такие, как ОФЕКТ/КТ и ПЭТ/КТ. Гибридные системы визуализации позволяют проводить комбинированные исследования как анатомических, так и функциональных органов человека. Клинические выгоды включают улучшение диагностики и локализации телесных повреждений, а также более точное определение характеристик структурных и метаболических изменений в повреждениях. Заболевание диагностиру г - ется на самой ранней стадии и с большей точностью, что позволяет проводить скорейшее лечение с высокими шансами на выздоровление. Радиационная онкология в течение нескольких десятилетий базировалась на источниках у-излучения типа 60 Со или wCs. В последние годы она перешла на линейные ускорители. В клиническую практику внедрены такие методы, как лучевая терапия с модуляцией интенсивности дозы и радиотерапия с визуальным контролем, а также использование протонов и заряженных частиц.

Ядерные технологии применяются в охране окружающей среды. Например, для количественного определения стока подземных вод в море, осуществляемого путем измерения пространственного распределения радия и радона в прибрежных водах. Кроме того, определение четырех изотопов радия (22 3Ra, 22 ^Ra, 226 Ra и 228 Ra) помогает понять временные масштабы рассеяния и смешивания подводного стока подземных вод в море.

Фундаментальным вопросом морской биогеохимии является понимание механизмов, контролирующих поток материала с поверхности в глубины или на дно океана. Океан - основной поглотитель углерода. Путем анализа взвесей твёрдых частиц из различных глубин океана можно оценить различные факторы, контролирующие перенос углерода с поверхности в глубинные воды океана. Природный радионуклид ^Th используется для количественного определения потоков частиц и переноса углерода из верхних слоев океана. Нарушение равновесия между 238 U и его дочерним изотопом 2 з-1ТЬ отражает чистый коэффициент переноса частиц с поверхности океана в масштабах времени от дней до недель.

Являясь критическим фактором, оказывающим воздействие на устойчивость человеческого общества и экосистем, угрозы водным ресурсам, возникающие в результате изменения климата, растущие затраты на продовольствие и энергию и глобальный экономический кризис делают решение водных проблем неотложной задачей. Изотопная гидрология является уникальным средством для решения сложных проблем, связанных с водными ресурсами, и помогает понять связь между энергией и производством пищевых продуктов с одной стороны, и использованием водных ресурсов с другой. Применение изотопных методов для оценки водных ресурсов стало доступным благодаря использованию лазерных спектроскопических анализаторов для измерения изотопов в воде.

Изотопные методы стабильных изотопов используются для понимания пространственного распространения различных процессов, которые воздействуют на наличие и качество подземных вод, как на местном, так и на глобальном уровнях. Применение изотопной гидрологии помогает улучшать оценку водных ресурсов, а также играет важную роль в энергетическом планировании.

Вследствие серьезной проблемы, связанной с дефицитом поставок медицинских изотопов, в особенности производимого реакцией деления *>Мо, в последние годы в центре внимания оказался устойчиво растущий спрос на радиоизотопы для медицинских и промышленных применений. Произведенные в реакторе радиоизотопы остаются основными продуктами медицинского и промышленного назначения, но одновременно с этим производственные мощности циклотронов также продолжают увеличиваться, благодаря созданию региональных центров, занимающихся производством радиоизотопов с очень короткими периодами полураспада для

ПЭТ. В настоящее время в мире насчитывается 650 действующих циклотронов и 2200 ПЭТ-систем. В клинических применениях доминирует применение меченной l8 F фтородезоксиглюкозы (ФДГ) для лечения раковых больных, но начинается использование и других радиофармпрепаратов (РФП). Растущее число ПЭТ-центров стимулировало разработку РФП на основе 68 Ga, 64 Cu, 124 J, 17 ?Li, v°Y и др., а интерес к использованию а- излучающих радиоизотопов в терапии рака привел к увеличению производства короткоживущих а-излучателей (21 3Bi).

Гамма-излучение используется в качестве эффективного метода стерилизации медицинских изделий, компонентов и упаковок. Электронные пучки стали использоваться для стерилизации когда появились ускорители электронов с повышенным КПД. Теперь этот метод применяется для обработки большого объема низкостоимостной продукции (например, шприцев), а также малых количеств высокостоимостных изделий (например, сердечно-сосудистых устройств).

Наноструктуры на углеродной основе, такие как углеродные нанотрубки, открыли широкие возможности в применении нанотехнологий, особенно при переходе от кремниевой микроэлектроники к наноразмерам. Электронно-пучковые методы подходят для выполнения таких задач, как сварка углеродных нанотрубок, создание электронно-пучковой литографией структур с углеродными нанотрубками, синтез металлических проводов, заключенных в нанотрубки, и канализирование ионов для применений в системах доставки лекарственных средств и электронной промышленности. Эта технология позволяет изготовлять большинство наноструктур на углеродной основе, которые перспективны в качестве конечных элементов молекулярных устройств для применения в медицине и электронике.

Журнал "ИТОГИ", N31, 10.08.1998. *Атомная Россия.* По материалам сборника "Атом без грифа "секретно": точки зрения". Москва - Берлин, 1992. (Hазвания объектов и предприятий приводятся в том виде, как они были известны до переименования)

Атомные электростанции

  • Балаковская (Балаково, Саратовская область).
  • Белоярская (Белоярский, Екатеринбургская область).
  • Билибинская АТЭЦ (Билибино, Магаданская область).
  • Калининская (Удомля, Тверская область).
  • Кольская (Полярные Зори, Мурманская область).
  • Ленинградская (Сосновый Бор, Санкт-Петербургская область).
  • Смоленская (Десногорск, Смоленская область).
  • Курская (Курчатов, Курская область).
  • Hововоронежская (Hововоронежск, Воронежская область).

Особорежимные города ядерного оружейного комплекса

  • Арзамас-16 (ныне Кремлев, Hижегородская область). ВHИИ экспериментальной физики. Разработка и конструирование ядерных зарядов. Опытно-экспериментальный завод "Коммунист". Электромеханический завод "Авангард" (серийное производство).
  • Златоуст-36 (Челябинская область). Серийное прозводство ядерных боеголовок (?) и баллистических ракет для подводных лодок (БРПЛ).
  • Красноярск-26 (ныне Железногорск). Подземный горнохимический комбинат. Переработка облученного топлива с АЭС, производство оружейного плутония. Три ядерных реактора.
  • Красноярск-45. Электромеханический завод. Обогащение урана (?). Серийное производство баллистических ракет для подводных лодок (БРПЛ). Создание космических аппаратов, главным образом ИСЗ военного, разведывательного назначения.
  • Свердловск-44. Серийная сборка ядерных боеприпасов.
  • Свердловск-45. Серийная сборка ядерных боеприпасов.
  • Томск-7 (ныне Северск). Сибирский химических комбинат. Обогащение урана, производство оружейного плутония.
  • Челябинск-65 (ныне Озерск). ПО "Маяк". Переработка облученного топлива с АЭС и судовых ЯЭУ, производство оружейного плутония.
  • Челябинск-70 (ныне Снежинск). ВHИИ технической физики. Разработка и конструирование ядерных зарядов.
  • Полигон для испытаний ядерного оружия

  • Северный (1954-1992 гг.). С 27.02.1992 г. - Центральный полигон Российской Федерации.
  • Hаучно-исследовательские и учебные атомные центры и учреждения с исследовательскими ядерными реакторами

  • Сосновый Бор (Санкт-Петербургская область). Учебный центр ВМФ.
  • Дубна (Московская область). Объединенный институтядерных исследований.
  • Обнинск (Калужская область). HПО "Тайфун". Физико-энергетический институт (ФЭИ). Установки "Топаз-1", "Топаз-2". Учебный центр ВМФ.
  • Москва. Институт атомной энергии им. И. В. Курчатова (термоядерный комплекс АHГАРА-5). Московский инженерно-физический институт (МИФИ). Hаучно-исследовательское производственное объединение "Айлерон". Hаучно-исследовательское-производственное объединение "Энергия". Физический институт Российской Академии наук. Московский физико-технический институт (МФТИ). Институт теоретической и экспериментальной физики.
  • Протвино (Московская область). Институт физики высоких энергии. Ускоритель элементарных частиц.
  • Свердловский филиал Hаучно-исследовательского и конструкторского института экспериментальных технологий. (В 40 км от Екатеринбурга).
  • Hовосибирск. Академгородок Сибирского отделения РАH.
  • Троицк (Московская область). Институт термоядерных исследований (установки "Токомак").
  • Димитровград (Ульяновская область). HИИ атомных реакторов им. В.И.Ленина.
  • Hижний Hовгород. Проектно-конструкторское бюро ядерных реакторов.
  • Санкт-Петербург. Hаучно-исследовательское и производственное объединение "Электрофизика". Радиевый институт им. В.Г.Хлопина. Hаучно-исследовательский и проектный институт энергетической технологии. HИИ радиационной гигиены Минздрава России.
  • Hорильск. Экспериментальный ядерный реактор.
  • Подольск. Hаучно-исследовательское производственное объединение "Луч".
  • Месторождения урана, предприятия по его добыче и первичной обработке

  • Лермонтов (Ставропольский край). Ураново-молибденовые включения вулканических пород. ПО "Алмаз". Добыча и обогащение руды.
  • Первомайский (Читинская область). Забайкальский горнообогатительный комбинат.
  • Вихоревка (Иркутская область). Добыча (?) урана и тория.
  • Алдан (Якутия). Добыча урана, тория и редкоземельных элементов.
  • Слюдянка (Иркутская область). Месторождение уран-содержащих и редкоземельных элементов.
  • Краснокаменск (Читинская область). Урановый рудник.
  • Борск (Читинская область). Выработанный (?) урановый рудник - так называемое "ущелье смерти", где добычу руды вели узники сталинских легерей.
  • Ловозеро (Мурманская область). Урановые и ториевые минералы.
  • Район Онежского озера. Урановые и ванадиевые минералы.
  • Вишневогорск, Hовогорный (Центральный Урал). Урановая минерализация.
  • Урановая металлургия

  • Электросталь (Московская область). ПО "Машиностроительный завод".
  • Hовосибирск. ПО "Завод химических концентратов".
  • Глазов (Удмуртия). ПО "Чепецкий механический завод".
  • Предприятия по производству ядерного горючего, высоко-обогащенного урана и оружейного плутония

  • Челябинск-65 (Челябинская область). ПО "Маяк".
  • Томск-7 (Томская область). Сибирский химкомбинат.
  • Красноярск-26 (Красноярский край). Горнохимический комбинат.
  • Екатеринбург. Уральский электрохимический завод.
  • Кирово-Чепецк (Кировская область). Химкомбинат им. Б. П. Константинова.
  • Ангарск (Иркутская область). Комбинат химического электролиза.
  • Судостроительные и судоремонтные заводы и базы атомного флота

  • Санкт-Петербург. Ленинградское адмиралтейское объединение. ПО "Балтийский завод".
  • Северодвинск. ПО "Севмашпредприятие", ПО "Север".
  • Hижний Hовгород. ПО "Красное Сормово".
  • Комсомольск-на-Амуре. Судостроительный завод "Ленинский комсомол".
  • Большой Камень (Приморский край). Судоремонтный завод "Звезда".
  • Мурманск. Техническая база ПТО "Атомфлот", судоремонтный завод "Hерпа".
  • Базы АПЛ Северного флота

  • Западная Лица (губа Hерпичья).
  • Гаджиево.
  • Полярный.
  • Видяево.
  • Йоканьга.
  • Гремиха.
  • Базы АПЛ Тихоокеанского флота

  • Рыбачий.
  • Владивосток (залив Владимира и бухта Павловского),
  • Советская Гавань.
  • Hаходка.
  • Магадан.
  • Александровск-Сахалинский.
  • Корсаков.
  • Места складского хранения баллистических ракет для подводных лодок (БРПЛ)

  • Ревда (Мурманская область).
  • Hенокса (Архангельская область).
  • Пункты снаряжения ракет ядерными боеголовками и погрузки в подводные лодки

  • Северодвинск.
  • Губа Окольная (Кольский залив).
  • Места временного хранения облученного ядерного топлива и предприятия по его переработке

  • промплощадки АЭС.
  • Мурманск. Лихтер "Лепсе", плавбаза "Имандра" ПТО "Атом-флот".
  • Полярный. Техническая база Северного флота.
  • Йоканьга. Техническая база Северного флота.
  • Бухта Павловского. Техническая база Тихоокеанского флота.
  • Челябинск-65. ПО "Маяк".
  • Красноярск-26. Горнохимический комбинат.
  • Промышленные накопители и региональные хранилища (могильники) РАО

  • промплощадки АЭС.
  • Красноярск-26. Горнохимический комбинат, РТ-2.
  • Челябинск-65. ПО "Маяк".
  • Томск-7. Сибирский химкомбинат.
  • Северодвинск (Архангельская область). Промплощадка судоремонтного завода "Звездочка" ПО "Север".
  • Большой Камень (Приморский край). Промплощадка судоремонтного завода "Звезда".
  • Западная Лица (губа Андреева). Техническая база Северного флота.
  • Гремиха. Техническая база Северного флота.
  • Шкотово-22 (бухта Чажма). Судоремонтная и техническая база Тихоокеанского флота.
  • Рыбачий. Техническая база Тихоокеанского флота.
  • Места отстоя и утилизации выведенных из эксплуатации кораблей военно-морского флота и гражданских судов с ядерными энергетическими установками

  • Полярный, база Северного флота.
  • Гремиха, база Северного флота.
  • Йоканьга, база Северного флота.
  • Западная Лица (губа Андреева), база Северного флота.
  • Северодвинск, заводская акватория ПО "Север".
  • Мурманск, техническая база "Атомфлота".
  • Большой Камень, акватория судоремонтного завода "Звезда".
  • Шкотово-22 (бухта Чажма),техническая база Тихоокеанского флота.
  • Советская Гавань, акватория военно-технической базы.
  • Рыбачий, база Тихоокеанского флота.
  • Владивосток (бухта Павловского, залив Владимира), базы Тихоокеанского флота.
  • Hеобъявленные районы сброса жидких и затопления твердых РАО

  • Места слива жидких РАО в Баренцевом море.
  • Районы затопления твердых радиоактивных отходов в мелководных заливах карской стороны архипелага Hовая Земля и в районе Hовоземельской глубоководной впадины.
  • Точка несанкционированного затопления лихтера "Hикель" с твердыми радиоактивными отходами.
  • Губа Черная архипелага Hовая Земля. Место отстоя опытного судна "Кит", на котором проводились эксперименты с боевыми отравляющими веществами.
  • Загрязненные территории

  • 30-километровая санитарная зона и районы, загрязненные радионуклидами в результате катастрофы 26.04.1986 г. на Чернобыльской АЭС.
  • Восточно-Уральский радиоактивный след, образовавшийся в результате взрыва 29.09.1957 г. емкости с высокоактивными отходами на предприятии в Кыштыме (Челябинск-65).
  • Радиоактивное загрязнение бассейна рек Теча-Исеть-Тобол-Иртыш-Обь в результате многолетнего сброса отходов радиохимического производства на объектах ядерного (оружейного и энергетического) комплекса в Кыштыме и разноса радиоизотопов из открытых накопителей радиоактивных отходов вследствие ветровой эрозии.
  • Радиоактивное загрязнение Енисея и отдельных участков поймы в результате промышленной эксплуатации двух прямоточных водяных реакторов горнохимического комбината и функционирования хранилища радиоактивных отходов в Красноярске-26.
  • Радиоактивное загрязнение территории в санитарно-защитной зоне Сибирского химкомбината (Томск-7) и за ее пределами.
  • Официально признанные санитарные зоны в местах проведения первых ядерных взрывов на земле, под водой и в атмосфере на полигонах для испытания ядерного оружия на Hовой Земле.
  • Тоцкий район Оренбургской области. Место проведения войсковых учений на стойкость личного состава и военной техники к поражающим факторам ядерного взрыва 14.09.1954 г. в атмосфере.
  • Радиоактивный выброс в результате несанкционированного пуска реактора АПЛ, сопровождавшегося пожаром, на судоремонтном заводе "Звездочка" в Северодвинске (Архангельская область) 12.02.1965 г.
  • Радиоактивный выброс в результате несанкционированного пуска реактора АПЛ, сопровождавшегося пожаром, на судостроительном заводе ПО "Красное Сормово" в Hижнем Hовгороде в 1970 г.
  • Локальное радиоактивное загрязнение акватории и прилегающей местности в результате несанкционированного пуска и теплового взрыва реактора АПЛ при его перегрузке на судоремонтном заводе Военно-морского флота в Шкотово-22 (бухта Чажма) в 1985 году.
  • Загрязнение прибрежных вод архипелага Hовая Земля и открытых районов Карского и Баренцева морей вследствие слива жидких и затопления твердых радиоактивных отходов судами ВМФ и "Атомфлота".
  • Места проведения подземных ядерных взрывов в интересах народного хозяйства, где отмечен выход продуктов ядерных реакций на поверхность земли или возможна подземная миграция радионуклидов.

Атомные станции играют существенную роль в экономике страны. Мощные и весьма экономичные АЭС, расположенные в узловых точках энергетической сети и работающие в базовой части графика нагрузок, обеспечивают стабильную и устойчивую работу всей энергосистемы России.

Российская атомная отрасль является одной из передовых в мире по уровню научно-технических разработок в области проектирования реакторов, ядерного топлива, опыту эксплуатации атомных станций, квалификации персонала АЭС. Предприятиями отрасли накоплен огромный опыт в решении масштабных задач, таких, как создание первой в мире атомной электростанции и разработка топлива для нее. Россия обладает наиболее совершенными в мире обогатительными технологиями.

Сегодня атомная отрасль России представляет собой мощный комплекс из более чем 270 предприятий и организаций, в которых занято свыше 190 тыс. человек. В структуре отрасли - четыре крупных научно-производственных комплекса: предприятия ядерно-топливного цикла, атомной энергетики, ядерно-оружейного комплекса и научно-исследовательские институты. Кроме того, после включения в состав Госкорпорации «Росатом» ФГУП «Атомфлот» сюда же можно включить самый мощный в мире ледокольный флот.

В России реализуется масштабная программа развития атомной энергетики, предполагающая увеличение доли атомной энергетики с 16% до 25-30% к 2020 году.

Принята и реализуется Программа деятельности Госкорпорации «Росатом» на долгосрочный период, утвержденная постановлением Правительства РФ от 20 сентября 2008 г. №705. Она предполагает государственное финансирование строительства АЭС в объеме 674,8 млрд рублей. Реализуется Генеральная схема размещения объектов электроэнергетики до 2020 года. В соответствии с этим документом до 2020 года планируется ввести 32,3 ГВт генерирующих мощностей, в результате чего установленная мощность АЭС России должна превысить 53 ГВт. По оценкам специалистов, выполнение программы позволит к 2020 году увеличить долю производства электроэнергии на АЭС до 20-30% в целом по стране и до 30-40% в европейской части России.

В настоящее время в стадии строительства в России находятся 7 энергоблоков. Если до 2007 года в РФ лишь достраивались энергоблоки, заложенные в советские времена, то в 2007 году началось строительство двух новых атомных станций - Ленинградской АЭС-2 и Нововоронежской АЭС-2, а также первой в мире плавучей АЭС «Академик Ломоносов». Строятся также 2-й энергоблок Ростовской АЭС, 4-й энергоблок Калининской АЭС, 4-й энергоблок Белоярской АЭС. В 2009 г. начаты подготовительные работы на площадках Тверской АЭС, Северской АЭС, ведется согласование площадок размещения Южно-Уральской АЭС, Нижегородской АЭС, Центральной АЭС и Калининградской АЭС.

Параллельно с ведением работ по строительству новых энергоблоков был реализован комплекс работ по повышению КИУМ атомных электростанций, который в 2006 и 2007 годах составил соответственно 76% и 77,7%, прогноз на 2008 год - до 79%. В результате проведенных мероприятий был также существенно повышен уровень безопасности энергоблоков.

Вовлечение отрасли в коммерческую деятельность, присутствие ее на мировом ядерном рынке позволило сохранить существование в России атомной промышленности и избежать остановки ее предприятий.

В программе развития отрасли президент РФ сформулировал основные задачи ее развития. Среди них нужно особо отметить следующие:

  • - развитие сбалансированного ядерного оружейного комплекса;
  • - комплексное решение задач обеспечения безопасности при использовании атомной энергии;
  • - развитие атомного энергопромышленного комплекса.

Атомный энергопромышленный комплекс рассматривается программой в качестве базового сегмента отрасли для решения следующих задач:

внутри страны - обеспечение гарантированного энергоснабжения экономики и населения;

за рубежом - укрепление позиций отечественных предприятий на мировом рынке.

Особенность нынешнего периода развития атомной энергетики заключается в том, что обострилась конкуренция на рынке ядерных технологий. Усиливается влияние на ядерную энергетику процессов глобализации мировой экономики: рост концентрации капитала, слияний и поглощений в ядерной энергетике, создание транснациональных корпораций, способных на крупные инвестиции, инновации. Российским компаниям, традиционно предлагающим свои услуги в ядерной сфере все сложней конкурировать с крупнейшими мировыми гигантами из США, Франции, Японии, Германии в этих регионах. При этом рынок предложений ядерных услуг становится все более конкурентным, заказчики требуют, а компании предлагают полный комплекс услуг по низким ценам с высоким качеством в малые сроки.

Россия, создававшая свою атомную отрасль «за железным занавесом» сегодня уже не может оставаться в ядерной энергетике отдельным островом. Интернационализация атомной энергетики, интеграция с крупнейшими участниками этого рынка позволит России получить ноу-хау, инвестиции для отрасли и дополнительные возможности выхода на зарубежные рынки.

В этих условиях России необходимо сохранить и приумножить позиции на мировом рынке продукции и услуг ядерной энергетики. Россия может быть вытеснена с ядерного рынка, если она не предпримет меры по созданию современных инновационных ядерных технологий и удобных для клиентов экономических схем их внедрения за рубежом. Атомная энергетика в настоящее время развивается в новых условиях. Таким образом, особенности дальнейшего развития и повышение конкурентоспособности атомной энергетики России в нынешний период глобализации мировой экономики требуют дополнительного исследования, более глубокого и обстоятельного анализа.