Искусственные источники света

04.09.2018

К основным типам электрических ламп и осветительных устройств относятся:

1. Лампы накаливания: в такой лампе электрический ток протекает через тонкую металлическую нить и нагревает ее, в результате чего нить испускает электромагнитное излучение. Стеклянная колба, заполненная инертным газом, предотвращает быстрое разрушение нити вследствие окисления кислородом воздуха. Преимуществом ламп накаливания является то, что лампы этого типа могут производиться для широкого диапазона напряжений – от нескольких вольт до нескольких сот вольт. В силу низкой эффективности («светового КПД», учитывающего только энергию излучения в видимом диапазоне) ламп накаливания эти устройства во многих применениях постепенно вытесняются люминесцентными лампами, газоразрядными лампами высокой интенсивности, светодиодами и другими источниками света.

Параметры этого светильника похожи на свет огня, свечи или других древних источников искусственного света. Свет от нагретого тела имеет непрерывный спектр и цветопередачу, близкую к солнечному свету. Следовательно, источники галогенных источников по-прежнему не имеют альтернативы автомобилям, где искусственное освещение имеет решающее значение для анализа и принятия решений в экстремальных условиях.

Утверждается, что нагретые тела имеют чрезмерное потребление энергии, поэтому нам приходится довольствоваться недостатками синтетических источников света. Но когда эта маленькая экономика находится за счет расходов на здоровье, возможностей для эффективной работы и полного отдыха, тогда эта логика не правильная. Справедливо предлагать качественную альтернативу даже с большой энергией, потому что логика этого популизма должна запрещать альтернативы кондиционеров и автомобилей выше определенной мощности.

2. Газоразрядные лампы: этот термин охватывает несколько видов ламп, в которых источником света является электрический разряд в газовой среде. Основу конструкции такой лампы составляют два электрода, разделенные газом. Как правило, в таких лампах используется какой-либо инертный газ (аргон, неон, криптон, ксенон) или смесь таких газов. Помимо инертных газов, газоразрядные лампы в большинстве случаев содержат и другие вещества, например, ртуть, натрий и/или галогениды металлов. Конкретные виды газоразрядных ламп часто называются по используемым в них веществах – неоновые, аргоновые, ксеноновые, криптоновые, натриевые, ртутные и металлогалогенные. К наиболее распространенным разновидностям газоразрядных ламп относятся:

Наиболее часто используемыми источниками света являются люминесцентные лампы и светодиодное освещение. После первоначальной эйфории этих экономических источников света все больше и больше людей отвергают их в качестве альтернативы лампе накаливания. Поэтому, после запрета на лучший искусственный источник света, появились более современные модификации в виде «галогенных» ламп.

Особенно вредными для здоровья человека являются синтетический спектр и пульсации компьютерной техники, что вызывает аномалии в биофизике человека. Все, что описано выше, приводит к выводу, что технология не только не дает нам лучшего света, но, наоборот, пытается наложить более ограниченные источники света. Ответ на человеческий организм - это много новых нарушений здоровья, стресса, мигрени, депрессии и т.д. Для которых все больше и больше научных и любительских исследований.

Люминесцентные лампы;

Металлогалогенные лампы;

Натриевые лампы высокого давления;

Натриевые лампы низкого давления.

Газ, заполняющий газоразрядную лампу, должен быть ионизирован под действием электрического напряжения, чтобы приобрести необходимую электропроводность. Как правило, для запуска газоразрядной лампы («зажигания» разряда) требуется более высокое напряжение, чем для поддержания разряда. Для этого используется специальные «стартеры» или другие зажигающие устройства. Кроме того, для нормальной работы лампы необходима балластная нагрузка, обеспечивающая стабильность электрических характеристик лампы. Стартер в сочетании с балластом образуют пускорегулирующий аппарат (ПРА). Газоразрядные лампы характеризуются длительным сроком службы и высоким «световым КПД». Недостатки этого типа ламп включают относительную сложность их производства и необходимость дополнительных электронных устройств для их стабильной работы.

На первом снимке вы видите спектр моего прототипа для гибридного освещения. На последнем снимке вы видите, насколько лучше светит другой гибрид в 3 метрах от источника света. Существует два механизма окраски. За счет цветных кристаллов, присутствующих в субстрате, с определенной химической структурой. За счет физической структуры нанослоев, наночастиц, где такие процессы, как интерференция, дифракция, множественное отражение, преломление и т.д. Как и в случае с первым и вторым механизмами, можно наблюдать обратимое изменение цвета.

Что такое обратимое изменение цвета? Это обычные люди часто встречаются, и химики-колористы используют его. Обратимое изменение цвета под воздействием внешних физических, химических или физико-химических явлений называется хромом. Его не следует путать с необратимыми процессами, такими как разрушение цветовых систем. Эти необратимые изменения цвета оцениваются как цветостойкость различных факторов.

Серные лампы: серная лампа представляет собой высокоэффективное осветительное устройство полного спектра без электродов, в котором источником света служит плазма серы, нагреваемая микроволновым излучением. Время разогрева серной лампы значительно меньше, чем у большинства типов газоразрядных ламп, за исключением люминесцентных, даже при низких температурах окружающей среды. Световой поток серной лампы достигает 80% максимальной величины в течение 20 с после включения; лампа может быть перезапущена примерно через пять минут после отключения электроэнергии;

Различают следующие типы хрома, в зависимости от изменения цвета: фотохром, термохром, гемохромия, мехахромия, электрохромность, магнитохромия. Фотохромность - это обратимое изменение цвета или поглощения света под воздействием электромагнитного излучения, включая естественные или искусственные источники облучения. С явлениями, такими как изменение цвета и обесцвечивание, химики-химики должны иметь дело с использованием чернил с сильной тенденцией к фотохромным свойствам. Типичным из этих чернил является то, что под действием яркого солнечного света они заметно меняют свой цвет, обратимый.

Светодиоды, в т.ч. органические: светодиод представляет собой полупроводниковый диод, излучающий некогерентный свет в узком спектральном диапазоне. Одним из преимуществ светодиодного освещения является его высокая эффективность (световой поток в видимом диапазоне на единицу потребленной электроэнергии). Светодиод, в котором эмиссионный (излучающий) слой состоит из органических соединений, называется органическим светодиодом (OLED). Органические светодиоды легче, чем традиционные, а преимуществом полимерных светодиодов является их гибкость. Коммерческое применение обоих указанных типов светодиодов уже начато, однако их использование в промышленности пока ограничено.

При помещении в темноту цвет возвращается к оригиналу. Следует отметить, что это явление довольно гистерезисное, и после определенного количества циклов цвет теряет свою интенсивность. Как правило, эти чернила, которые подвержены фотохромному воздействию, имеют низкую светочувствительность.

Термохромия - это обратимое изменение окраски при нагревании или охлаждении объекта. Гемохромия - это обратимое изменение в действии химических реагентов. Примером бумаги с гемохромическими свойствами является известный химик всех видов. Механохромия - это обратимое изменение цвета в деформации или давлении.

Наиболее эффективным электрическим источником света является натриевая лампа низкого давления. Она испускает практически монохромный (оранжевый) свет, сильно искажающий зрительное восприятие цветов. По этой причине данный тип ламп используется, главным образом, для наружного освещения. «Световое загрязнение», создаваемое натриевыми лампами низкого давления, может быть легко отфильтровано в отличие от света других источников с широким или непрерывным спектром.

Электрохромное и магнитохромное обратимое изменение цвета при прохождении через различные виды тока или действия магнитного поля. Используется для автоматического затенения очков автомобиля. Полезные ссылки для фирм-чернил. Как «социальное животное», каждый из нас вынужден проводить большую часть времени в помещении без прямого контакта с ярким солнечным светом солнца. Мы работаем в основном в помещении, мы сна в помещении, мы часто занимаемся спортом в помещении, большую часть дня мы находимся в комнатах, которые могут быть освещены светом, поступающим из окон или из искусственного источника, но это не достаточно.

Санитарные нормы, предъявляемые к освещенности учебных помещений. Приборы и методы определения (измерения) освещенности в школьных кабинетах и лабораториях. Коэффициент естественной освещенности и его определение.

Все учебные помещения должны иметь ЕО. Наилучшими видами ЕО в учебных являются боковое левостороннее. При глубине помещения более 6м необходимо устройство правостороннего подсвета. Направление основного светового потока справа, спереди и сзади недопустимо, т.к. уровень ЕО на рабочих поверхностях парт снижается в 3-4 раза.

Чтобы функционировать нормально и нормально, нашим клеткам необходимо ежедневное количество естественного света. Насколько важен свет для нашего тела и психики. Этот витамин жизненно необходим для ряда процессов в организме. Витамин необходим для поглощения кальция, и не случайно его присутствие в теле ребенка и ребенка жизненно важно для их костей. Солнечный свет благотворно влияет на наше настроение и склонность к угнетающим состояниям, и это не обычная прихоть или прихоть, «это мрачно, и это плохо для меня тоже».

Изучая странный парадокс в северных европейских странах, где жизнь известна как одно из самых высоких, но также депрессивных состояний, попытки самоубийства и фактические самоубийства также очень высоки, ясно, что близкие и прямые отношения с природно-климатическими особенностями. А именно, мы имеем в виду тот факт, что в этой части мира происходит систематическое отсутствие полного солнечного света.

Стекла окон следует ежедневно протирать влажным способом с внутренней стороны и мыть снаружи не менее 3-4 раз в год и со стороны помещений не менее1-2 раз в месяц. Нормирование ЕО осуществляется по СниП.

Для окраски парт рекомендуется зеленая гамма цветов, а также цвет натуральной древесины с Q (коэф. отражения) 0,45. Для классной доски - темно зеленый или коричневый цвет с Q=0,1 - 0,2. Стекла, потолки, полы, оборудование учебных помещений должны иметь матовую поверхность во избежание образования бликов. Поверхности интерьера учебных помещений следует окрашивать в теплые тона, потолок и верхние части стен окрашивают в белый цвет. Нельзя помещать растения на подоконники.

Оказывается, это первый и главный фактор депрессии и психических расстройств, если нет других серьезных проблем. Солнечный свет также влияет на наш гормональный баланс. Наиболее пострадавшим является мелатонин - гормон, уровень которого отвечает за спокойный и здоровый сон, чрезмерную сонливость или бессонницу и метаболическую энергию. Если мы хотим спать, мы должны доверять свету, чтобы определить это. Неплохо спать с телефоном или читателем - мы путаем сигналы с телом.

Энергия, которую мы получаем от солнца, не имеет себе равных и незаменима - она ​​обеспечивает жизненную силу, тон, хорошее настроение, эндорфины, стремление к жизни, силу и мотивацию. Кроме того, ученым удалось доказать, что свет оказывает болеутоляющее и антидепрессивное действие, расслабляет нервные окончания, уменьшает чувство боли, стресса, беспокойства. Один день - свет, движение и свежий воздух могут творить чудеса с самыми грустными и разочарованными людьми. Ежедневные прогулки всегда рекомендуются для депрессии.

ИО обеспечивается люминесцентными лампами (ЛБ, ЛЕ) или лампами накаливания. На помещение площадью 50м2 должно быть установлено 12 действующих люминесцентных светильников. Классная доска освещается двумя установленными параллельно ей светильниками (на 0,3м выше верхнего края доски и на 0,6 в сторону класса перед доской). Общая электромощность на класс в этом случае составляет 1040Вт.

Свет действует очень хорошо на коже и на коже, достигая суставов, костей, внутренних органов, тканей и систем. Поэтому в случае мышечных, ревматоидных, реактивных заболеваний, травматических травм, падений, переломов, растяжения связок, растяжения связок, спортивных травм и т.д. Рекомендуется оставаться на солнце без перегрева и перегрева. Таким образом, естественные процессы заживления активируются и унылые симптомы.

Мы знаем, как, пробив кость, ортопеды рекомендуют помещать травмированную секцию в солнце, но не очень тепло. Солнечный свет также обладает антибактериальным и противогрибковым действием. В начале 20-го века датский врач Неллс Риберг Фидсон получил Нобелевскую премию за свое открытие, основанное на целебных свойствах света и его специфических особенностях. Затем ему удалось исцелить многих людей, страдающих от туберкулеза кожи. Его научные исследования, заметки и события странно исчезают, а также странно совпадают с бумом антибиотики эпохи.

При освещении лампами накаливания помещения площадью 50м2 должно быть установлено 7-8 действующих световых точек общей мощностью 2400Вт.

Светильники в учебном помещении располагают двумя рядами параллельно линии окон при расстоянии от внутренней и наружной стен 1,5м, от классной доски 1,2м, от задней стены 1,6м; расстояние между светильниками в рядах 2,65м.

Он сделал революционное открытие, что несколько световых триггеров стимулируют естественный биопотенциал тела, сохраняя долгосрочную жизнь и здоровье без употребления наркотиков. С глубокими древними мудрецами того времени было известно, что солнце заживает. Существует множество сообщений о целых солнечных садах, которые прошли солнечную терапию. Конечно, такое лечение по-прежнему сегодня, в более современной и предотвращенной форме. Тем не менее, не забывайте, что разница между препаратом и ядом находится в дозе.

Будьте умеренными в контакте с солнцем и светом, а также в сильном солнечном свете, даже зимой, защитите себя. Тела, излучающие свет, называются источниками света или источниками света. Существует много разных типов источников света, но их можно разделить на два типа - натуральные и искусственные.

Светильники очищают не реже одного раза в месяц (запрещается привлекать учащихся к очистке осветительной арматуры).

Учебные помещения школ должны иметь естественное освещение. Без естественного освещения допускается проектировать: снарядные, умывальные, душевые, уборные при гимнастическом зале; душевые и уборные персонала; кладовые и складские помещения (кроме помещений для хранения легковоспламеняющихся жидкостей), радиоузлы; кинофотолаборатории; книгохранилища; бойлерные, насосные водопровода и канализации; камеры вентиляционные и кондиционирования воздуха; узлы управления и другие помещения для установки и управления инженерным и технологическим оборудованием зданий; помещения для хранения дезсредств. В учебных помещениях следует проектировать боковое левостороннее освещение. При двустороннем освещении, которое проектируется при глубине учебных помещений более 6 м, обязательно устройство правостороннего подсвета, высота которого должна быть не менее 2,2 м от потолка. При этом не следует допускать направление основного светового потока впереди и сзади от учащихся. В учебно-производственных мастерских, актовых и спортивных залах также может применяться двустороннее боковое естественное освещение и комбинированное (верхнее и боковое).

Источник испускает свет, потому что его строительные блоки - атомы или молекулы - излучают фотоны. Атомы и молекулы могут иметь только определенные энергетические значения, называемые энергетическими уровнями. Самый низкий уровень энергии называется базовым, а все остальные уровни с более высоким уровнем энергии - возбудимыми уровнями. Частицы, которые находятся на базовом уровне, не могут излучать фотоны или выделять энергию. Частицы, находящиеся на более высоких уровнях энергии, могут перейти на базовые или другие более низкие уровни и испускать фотоны.

Следует использовать следующие цвета красок:

Для стен учебных помещений - светлые тона желтого, бежевого, розового, зеленого, голубого;

Для мебели (парты, столы, шкафы) - цвета натурального дерева или светло-зеленый;

Для классных досок - темно-зеленый, темно-коричневый;

Для дверей, оконных рам - белый.

Для максимального использования дневного света и равномерного освещения учебных помещений рекомендуется:

Каждый атом или молекула переходит на более низкий уровень и испускает фотон спонтанно, без какого-либо внешнего воздействия или под воздействием внешнего воздействия - стимулируется. В зависимости от физических процессов, которые приводят к возбуждению атомов, и в зависимости от того, что такое излучение, могут существовать различные типы источников света.

Частицы частиц постоянно взаимодействуют друг с другом и обмениваются энергией. Вот почему некоторые молекулы находятся в состоянии возбуждения, и они бросают фотоны. Выброс фотонов из тел, возникающий в результате возбуждения атомов при тепловом движении строительных блоков, называется тепловым излучением. Чем выше температура и чем выше кинетическая энергия теплового движения, тем чаще энергетические уровни возбуждаются атомами. Вот почему тепловое излучение сильно зависит от температуры. При более высоких температурах выделяется больше фотонов и более высоких энергий.

Сажать деревья не ближе 15 м, кустарник - не ближе 5 м от здания;

Не закрашивать оконные стекла;

Не расставлять на подоконниках цветы. Их следует размещать в переносных цветочницах высотой 65 - 70 см от пола или подвесных кашпо в простенках окон;

Очистку и мытье стекол проводить 2 раза в год (осенью и весной).

Минимальное значение КЕО нормируется для наиболее удаленных от окон точек помещения при одностороннем боковом освещении. Определяют освещенность в жилых помещениях на полу или высоте 0,8 м от пола. Одновременно измеряют освещенность рассеянным светом под открытым небом. КЕО рассчитывают по выше приведенной формуле и сопоставляют с нормативными значениями.

Из известных природных или искусственных источников света тепловое излучение имеет солнце и звезды, источники света, в которых используются пламя и лампы накаливания. Световая эманация, вызванная возбуждением атомов под действием другого фактора, отличного от движения тепла, называется люминесценцией. Известны различные типы люминесценции.

В упомянутых источниках света каждый возбужденный атом испускает спонтанно, момент излучения и направление испускаемого фотона являются случайными. Но в таких источниках света, как лазеры, используется стимулированное излучение. Он запускается, когда атом фотона проходит мимо другого атома, который был возбужден на том же уровне, и в результате резонанса второй атом падает на фотон, который имеет одно и то же направление, частоту и фазу джиттера. Лазеры - самые мощные источники света! Лазерное излучение имеет высокую интенсивность, высокую монохроматичность и характеризуется хорошей ориентацией.

Среднее значение КЕО нормируется в помещениях с верхним комбинированным освещением. В помещении определяют освещенность в 5 точках на высоте 1,5 м над полом и одновременно определяют освещенность под открытым небом (с защитой от прямых солнечных лучей). Затем рассчитывают КЕО для каждой точки.

Среднее значение КЕО рассчитывают по формуле:

где: KEO1, КЕО2... КЕО5 - значение КЕО в различных точках; n - количество точек измерения.

Лампа накаливания источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно вольфрама), накаливаемой электрическим током до температуры 2 5003 300 К, близкой к температуре плавления вольфрама (рис. 5). Световая отдача лампы накаливания 1035 лм/Вт; срок службы до 2 тыс. ч. Этот вид ламп все еще преобладает и производится в широком ассортименте, несмотря на имеющиеся в производстве более экономичные источники света. По конструкции лампы накаливания бывают вакуумные (НВ), газонаполненные (НГ), биспиральные (НБ), биспиральные с криптоно-ксеноновым наполнением (НБК). Имеются также зеркальные лампы , являющиеся лампами-светильниками.

Все большее распространение получают галогенные лампы накаливания. Наличие в колбе лампы паров галогенов (йода или брома), уменьшающих количество испарения вольфрама, позволило повысить температуру накала вольфрамовой нити, в результате чего световая отдача увеличивается до 40 лм/Вт и спектр излучаемого света приближается к естественному. Кроме того пары вольфрама, испаряющегося с нити накала, соединяются с йодом и вновь оседают на нить, препятствуя ее истощению. Срок службы этих ламп увеличился до 35 тыс. ч. Двухцокольные линейные галогенные лампы (рис. 5, г ) используются для освещения широких поверхностей. Благодаря применению упрочненных держателей, нити накала обладают высокой устойчивостью к механическим воздействиям. Лампы совмещают в себе высокую светоотдачу, отличный коэффициент цветопередачи, постоянный световой поток в течение всего срока службы, мгновенное перезажигание, возможности регулировки яркости.

Преимущества ламп накаливания:

– малая стоимость;

– отсутствие необходимости пускорегулирующей аппаратуры, при включении зажигаются практически мгновенно;

– возможность работы как на постоянном токе (любой полярности), так и на переменном;

– возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

– отсутствие токсичных компонентов и как следствие отсутствие необходимости инфраструктуры по сбору и утилизации;

– отсутствие мерцания и гудения при работе на переменном токе;

– непрерывный спектр излучения;

– устойчивость к электромагнитному импульсу;

– возможность использования регуляторов яркости;

– независимость работы от условий окружающей среды и температуры;

– световой поток к концу срока службы снижается незначительно (на 15 %).

Недостатки:

– низкая световая отдача (в три–шесть раз меньше, чем у газоразрядных ламп);

– относительно малый срок службы;

– зависимость световой отдачи и срока службы от напряжения;

– цветовая температура лежит в пределах 2 300–2 900 K (преобладают желтые и красные лучи, что искажает цветопередачу, поэтому их не применяют при работах, требующих различения цветов );

– световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %;

– температура колбы галогенных ламп может достигать 500 °С, поэтому при установке ламп следует соблюдать нормы противопожарной безопасности (например, обеспечить достаточное расстояние между поверхностью перекрытия и подвесным потолком);

– обладают большой яркостью, но не дают равномерного распределения светового потока, для исключения прямого попадания света в глаза и вредного воздействия большой яркости на зрение нить накаливания лампы необходимо закрывать;

– при применении открытых ламп почти половина светового потока не используется для освещения рабочих поверхностей, поэтому ЛН необходимо устанавливать в осветительной арматуре.

Ограничения импорта, закупок и производства. В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу, во многих странах введен или планируется ввод запрета на производство, закупку и импорт ламп накаливания, с целью стимулирования замены их на энергосберегающие лампы (компактные люминесцентные лампы и др.).

С 1 сентября 2009 г. в Евросоюзе вступил в силу поэтапный запрет на производство, закупку магазинами и импорт ламп накаливания (за исключением специальных ламп). С 2009 г. запрет коснется ламп мощностью ≥ 100 Вт, ламп с матовой колбой ≥ 75 Вт и др.; ожидается, что к 2012 г. будет запрещен импорт и производство ламп накаливания меньшей мощности.

23 ноября 2009 г. президент России подписал принятый ранее Госдумой закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Согласно документу, с 1 января 2011 г. к обороту на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более; с 1 января 2013 г. – электроламп мощностью 75 Вт и более, а с 1 января 2014 г. – ламп мощностью 25 Вт и более.

Основные характеристики ламп накаливания (ЛН) :

– номинальное значение напряжения;

– номинальное значение мощности;

– номинальное значение светового потока (иногда силы света);

– срок службы;

L , диаметр D ).

Технические данные ламп накаливания приведены в табл. 1 прил. 2 .

В настоящее время все большее применение находят газоразрядные лампы , в которых излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции. Основным преимуществом газоразрядных ламп является их экономичность. Световая отдача этих ламп колеблется в пределах 40...110 лм/Вт. Срок их службы доходит до 12 тыс. ч. С их помощью легче создать равномерное освещение, спектр их излучения ближе к естественному свету.

По составу среды различают следующие газоразрядные лампы:

– с газом;

– с парами металлов и различных соединений.

По давлению :

– газоразрядные лампы низкого давления (от 0,1 до 25 кПа);

– газоразрядные лампы высокого давления (от 25 до 1000 кПа);

– газоразрядные лампы сверхвысокого давления (от 1000 кПа).

По типу разряда :

– дуговые;

– тлеющие;

– импульсные.

По источнику излучения :

– газоразрядные лампы, у которых источником света являются атомы, ионы или молекулы;

– фотолюминесцентные лампы, у которых источником света являются люминофоры, возбуждаемые разрядом;

– электродосветные лампы, у которых источником света являются электроды, раскаленные до высокой температуры.

По охлаждению :

– газоразрядные лампы с естественным охлаждением;

– газоразрядные лампы с принудительным охлаждением.

Наиболее распространены газоразрядные лампынизкого давления люминесцентные (рис. 6). Световая отдача – до 100 лм/Вт. Они имеют форму цилиндрической стеклянной трубки с двумя электродами. Трубка наполнена дозированным количеством ртути (3080 мг) и смесью инертных газов (часто аргон) при давлении около 400 Па (3 мм рт. ст.). По обоим концам трубки закреплены электроды. При включении электрический ток, протекающий между электродами, вызывает в парах ртути электрический разряд, сопровождающийся излучением (электролюминесценция). Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует ультрафиолетовое излучение, возникающее при газовом электрическом разряде, в видимый свет. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью. В настоящее время промышленность выпускает несколько типов люминесцентных ламп, отличающихся по цветности: лампы дневного света (ЛД), лампы дневного света с улучшенной цветопередачей (ЛДЦ), лампы наиболее близкие к естественному свету (ЛЕ), лампы белого цвета (ЛБ), лампы теплого белого цвета (ЛТБ), лампы холодного белого цвета (ЛХБ), лампы дневного света с исправленной цветопередачей (ЛДЦ), лампы рефлекторные с внутренним отражающим слоем (ЛР) и др.

Преимущества люминесцентных ламп:

– широкий диапазон цветности;

– благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;

– по сравнению с лампами накаливания обеспечивают такой же световой поток, но потребляют в 45 раз меньше энергии;

– имеют низкую температуру колбы;

– повышенный срок службы (до 615 тыс. ч.).

Недостатки люминесцентных ламп:

– относительная сложность схемы включения, шум дросселей;

– ограниченная единичная мощность и большие размеры при данной мощности;

– невозможность переключения ламп, работающих на переменном токе, на питание от сети постоянного тока;

– зависимость характеристик от температуры внешней среды (световой поток снижается при повышенных температурах);

– значительное снижение потока к концу срока службы;

– относительная дороговизна;

– вредные для зрения пульсации светового потока с частотой 100 Гц при переменном токе 50 Гц;

– срок действия компактных ЛЛ не всегда соответствует заявленному и может быть сравним со сроком ламп накаливания при существенно большей стоимости.

Пульсация светового потока возникает вследствие малой инерционности свечения люминофора. Это может привести к появлению стробоскопического эффекта , который проявляется в искажении зрительного восприятия движущихся или вращающихся объектов. При кратности или совпадении частоты пульсации светового потока и частоты вращения объекта вместо одного предмета видны изображения нескольких, искажаются скорость и направление движения. Стробоскопический эффект очень опасен, так как вращающиеся части механизмов, детали, инструмент могут показаться неподвижными и стать причиной травматизма.

Основные характеристики люминесцентных ламп :

– номинальная мощность;

– номинальное напряжение;

– номинальный ток лампы;

– световой поток;

– габаритные размеры (полная длина L , диаметр D );

– пульсации светового потока.

Технические данные основных типов ЛЛ приведены в табл. 2 Приложения 2 .

К газоразрядным лампам высокого и сверхвысокого давления относят лампы: ДРЛ дуговые ртутные люминесцентные; ДРЛР рефлекторные дуговые ртутные лампы с отражающим слоем; ДРИ ртутные лампы высокого давления с добавкой иодидов металла; ДКсТ дуговые ксеноновые трубчатые и др.

Принцип действия ламп ДРЛ (рис. 7): в горелке из прочного тугоплавкого химически стойкого прозрачного материала в присутствии газов и паров металлов возникает свечение разряда электролюминесценция. При подаче напряжения на лампу между близко расположенными главным катодом и дополнительным электродом обратной полярности на обоих концах горелки начинается ионизация газа. Когда степень ионизации газа достигает определенного значения, разряд переходит на промежуток между главными катодами, так как они включены в цепь тока без добавочных сопротивлений, и поэтому напряжение между ними выше. Стабилизация параметров наступает через 1015 минут после включения (в зависимости от температуры окружающей среды, чем холоднее, тем дольше будет разгораться лампа).

Электрический разряд в газе создает видимое белое, без красной и голубой составляющих спектра, и невидимое ультрафиолетовое излучение, вызывающее красноватое свечение люминофора. Эти свечения суммируются, в результате получается яркий свет, близкий к белому.

При изменении напряжения сети на 1015 % в большую или меньшую сторону работающая лампа отзывается соответствующим повышением или потерей светового потока на 2530 %. При напряжении менее 80 % сетевого лампа может не зажечься, а в горящем состоянии погаснуть.

При горении лампа сильно нагревается, после выключения должна остыть перед следующим включением.

Лампы ДРЛ позволяют создавать большие уровни освещенности и рекомендуются к применению при высоте помещения более 12...14 м, при наличии в воздухе дыма, пыли и копоти. Однако по спектральному составу излучения они сильно отличаются от люминесцентных. Их нельзя применять там, где недопустимо искажение цветовосприятия.

Наиболее экономичными являются ДРИ ртутные лампы высокого давления с добавкой иодидов металла , их часто называют металлогалогенными. Светоотдача этих ламп достигает 80 лм/Вт.

Трубчатые ксеноновые газоразрядные лампы высокого давления ДКсТ (дуговые ксеноновые трубчатые), имеющие высокую мощность (от 2 до 100 кВт), применяются в основном для наружного освещения в связи с опасностью ультрафиолетового облучения работающих в помещении. Разработаны специальные ксеноновые лампы ДКсТЛ в колбе из легированного кварца, предназначенные для применения в производственных помещениях, расположенных на Севере нашей страны, где они служат одновременно и для ультрафиолетового облучения работающих.

Натриевые газоразрядные лампы высокого давления ДНаТ (дуговые натриевые трубчатые) обладают наивысшей эффективностью и удовлетворительной цветопередачей. Применяются для освещения помещений с большой высотой, где требования к цветопередаче невысоки или в декоративных целях.

Преимущества ламп ДРИ:

– большой срок службы (до 12–20 тыс. ч.);

– большая световая отдача;

– компактность при большой единичной мощности;

– обеспечивают более равномерное освещение и рекомендованы для применения в светильниках общего освещения.

Недостатки :

– преобладание в спектре сине-зеленой части, ведущее к неудовлетворительной цветопередаче;

– возможность работы только на переменном токе;

– длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания после даже очень кратковременного перерыва питания лампы лишь после остывания (примерно 10 мин);

– пульсации светового потока больше, чем у люминесцентных ламп;

– значительное снижение светового потока к концу срока службы (до 70 %);

– наличие ртути (от 20 до 150 мг ртути).

Повреждения герметичности лампы ДРЛ вполне хватит, чтобы серьезно загрязнить, например, цех авиационного завода размерами сто на триста метров и с высотой потолков до 10 метров.

Технические данные ламп ДРЛ приведены в табл. 3 прил. 2 .

Светодиодное освещение – одно из перспективных направлений технологий искусственного освещения, основанное на использовании светодиодов в качестве источника света. Светодиод или светоизлучающий диод (СД, СИД, LED – англ. Light-emitting diode ) полупроводниковый прибор, излучающий свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Светодиодное освещение, благодаря эффективному расходу электроэнергии и простоте конструкции, нашло широкое применение в ручных осветительных приборах, в светотехнике для создания дизайнерского освещения специальных современных дизайн-проектов. Надежность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах (встроенное потолочное освещение и т. д.).

Преимущества светодиодного освещения:

– экономичность – световая отдача светодиодных систем уличного освещения достигает 140 лм/Вт;

– срок службы в 30 раз больше по сравнению с лампами накаливания;

– возможность получать различные спектральные характеристики без применения светофильтров;

– малые размеры;

– отсутствие ртутных паров (в сравнении с люминесцентными лампами);

– малое ультрафиолетовое и инфракрасное излучение;

– незначительное относительное тепловыделение (для маломощных устройств);

– высокая прочность.

Недостатки :

– высокая цена (отношение цена/люмен у сверхъярких светодиодов в 50–100 раз больше, чем у обычной лампы накаливания);

– низкая предельная температура: мощные осветительные светодиоды требуют внешнего радиатора для охлаждения;

– необходимость низковольтного источника питания постоянного тока для обеспечения питания светодиодов от сети;

– высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников .

Электрический светильник это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Тип светильников определяется характером производственного помещения и технологического процесса, необходимой безопасностью, качеством освещения и удобством обслуживания . Слепящее действие света устраняется при правильном выборе высоты подвеса определенного типа светильника.

Важной характеристикой светильника является его коэффициент полезного действия – отношение фактического светового потока светильника Ф ф к световому потоку помещенной в него лампы Ф л, т. е.

.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.