Отечественные диоды в стеклянном корпусе маркировка. Что представляет собой данный элемент электрических схем. Описание программы Color and Code

15.05.2018

Стабилитрон еще называют опорным диодом. Предназначены стабилитроны для стабилизации выходного напряжения при колебания входного или при изменении величины нагрузки (рис. 1 ).

Рис. 1 – Функциональная схема работы стабилитрона

Например, если на нагрузке нужно получить 5 В, а напряжение источника питания колеблется в пределах 9 В. Чтобы снизить и стабилизировать напряжение, подводимое от источника питания, до необходимых 5 В применяют стабилитроны. Конечно, можно применять и стабилизаторы напряжения, в данном случае подойдут или . Однако, применение их не всегда оправдано, поэтому в ряде случаев используют стабилитроны.

Внешне они похожи на диоды и имею вид, показанный на рис. 2 .


Рис. 2 – Внешний вид стабилитронов

Обозначение стабилитронов на схемах приведено на рис. 3 .


Принцип действия стабилитрона

Теперь давайте разберемся каким образом стабилитрон выполняет стабилизацию напряжение.

Основной характеристикой стабилитрона, впрочем, как и диода, является вольтамперная характеристика (ВАХ). Она показывается зависимость величины тока, протекающего через стабилитрон, от величины приложенного к нему напряжения (рис. 4 ).

ВАХ стабилитрона имеет две ветви.


Рис. 4 – ВАХ стабилитрона

Прямая ветвь стабилитрона практически не отличается от прямых ветвей обычных диодов и для последних она же будет рабочей.

Нормальный режим работы стабилитрона является когда он находится под обратным напряжением. Поэтому для него рабочей будет обратная ветвь. Она расположена практически параллельно оси обратных токов. На этой кривой характерными есть две точки: 1 и 2 (рис. 4 ), между ними находится рабочая область стабилитрона.

При некоторой величине обратного напряжения U ст наступает электрический пробой p n перехода стабилитрона и через наго протекает уже значительный ток. Однако при изменении в широких пределах тока от значения Imin до Imax падение напряжения на стабилитроне U ст практически не изменяется (рис. 4 ). Благодаря этому свойству и осуществляется стабилизация напряжения.

Если ток, протекающий через стабилитрон, превысит значение Imax , то произойдет перегрев полупроводниковой структуры, наступит тепловой пробой и стабилитрон выйдет из строя.

К источнику питания Uип стабилитрон подключается через токоограничивающий резистор Rогр , который служит для ограничения тока, протекающего через стабилитрон, а также совместно с ним образует делитель напряжения (рис. 5 ).


Рис. 5 – Схема включения стабилитрона

Обратите внимание, в отличие от диода стабилитрон подключается в обратном направлении, т. е. на катод подается «+» источника питания, а на анод «-».

Параллельно к выводам стабилитрона подключается нагрузка R н , на зажимах которой требуется поддерживать стабильное напряжение.

Процесс стабилизации напряжения заключается в следующем. При увеличении напряжения источника питания возрастает общий ток цепи I , а следовательно и ток Iст , протекающий через стабилитрон VD , а также увеличивается падение напряжения на токоограничивающем резисторе R огр . При этом напряжение на стабилитроне и соответственно на нагрузке остается почти неизменным.

При изменении сопротивления нагрузки, происходит перераспределение общего тока I между стабилитроном и нагрузкой, а величина напряжения на них практически не меняется.

Если напряжение на нагрузке больше напряжения стабилизации стабилитрона, то применяют несколько последовательно включенных стабилитронов. Например, если необходимо получить 10 В стабильного напряжения, то за неимением нужного стабилитрона, можно включить последовательно два стабилитрона по 5 В (рис. 6 ).


Рис. 6 – Последовательное соединение стабилитронов

Также стабилитроны успешно используются в системах автоматики в качестве датчиков, реагирующих на изменение напряжения. Например, если величина напряжения превысит определенное значение, то стабилитрон откроется и через катушку реле будет протекать ток. В результате реле сработает и даст команду другим устройствам либо просто просигнализирует о превышении некоторого уровня напряжения.

Помимо стабилизации постоянного напряжения, с помощью стабилитронов можно стабилизировать и переменное напряжения. Для этого используют последовательное встречное включение двух стабилитронов (рис. 7 ).


Рис. 7 – Схема включения стабилитрона на переменное напряжение

Только на выходе будет не идеальная синусоида, а со срезанными верхами, т. е. форма напряжения будут приближена к трапеции (рис. 8, 9 ).


Рис. 8 – Осциллограмма входного напряжения


Рис. 9 – Осциллограмма напряжения на стабилитроне

Применяются несколько способом маркировки стабилитронов. Стабилитроны в стеклянному корпусе, имеющие гибкие выводы, маркируются самым понятным способом. Как правило на корпус наносятся цифры, разделённые латинской буквой «V». Например, 4 V 7 обозначает, что напряжение стабилизации 4,7 В; 9 V 1 – 9,1 В и так далее (рис. 10 ).


Рис. 10 – Маркировка стабилитронов в стеклянных корпусах

Стабилитроны в пластиковом корпусе имеют маркировку в виде цифр и букв. Сами по себе эти цифры ни о чем не говорят, однако, с помощью даташита их можно легко расшифровать. Например обозначение 1N5349B означает, что напряжение стабилизации 12 В (рис. 11 ). Кроме напряжения такая маркировка учитывает и другие параметры стабилитрона.


Рис. 10 – Маркировка стабилитронов в пластиковых корпусах

Черное либо серое кольцо, нанесенное на корпус стабилитрона, обозначает его катод (рис. 12 ).


Рис. 12 –

Маркировка smd стабилитронов

В качестве маркировка smd стабилитронов применяются цветные кольца. Подобная маркировка применяется также для советские не smd стабилитронов. В импортных стабилитронах цветное кольцо наносится со стороны катода (рис. 13 ). Для расшифровки цветных колец используют даташити или онлайн расшифровщики.


Рис. 13 – SMD стабилитрон в стеклянном корпусе

Еще изготавливаются smd стабилитроны с тремя выводами (рис. 14 ). Один из них не задействован. Эти выводы можно определить с помощью мультиметра.


Рис. 14 – SMD стабилитрон с тремя выводами

При отсутствии справочника, даташита или нечеткой маркировки номинальное напряжение стабилитрона можно определить опытным путем. Сначала с помощью мультиметра нужно узнать соответствующие выводы и подключить стабилитрон через токоограничивающий резистор (см. рис. 5 ). Затем подать напряжение от регулируемого источника питания. Плавно изменяя подведенное напряжение нужно следить за изменение напряжения на стабилитроне. Если при изменении величины напряжения источника питания напряжение на стабилитроне не изменяется, то это и будет его напряжение стабилизации.

Выводы стабилитрона определяются точно также, как и . Мультиметр следует установить в режим прозвонки и коснуться щупами соответствующий выводов (рис. 15, 16 ).


Рис. 15 – Прямое напряжение


Рис. 16 – Обратное напряжение

Под действием протекающего тока через стабилитрон он нагревается. Выделившееся тепло рассеивается в окружающее пространство. Чем больше стабилитрон способен рассеять тепла не перегреваясь, тем выше его мощность рассеивания и тем больший ток можно пропустить через него. Как правило, чем больше габариты стабилитрона, тем большая у него мощность рассеяния (рис. 17 ).


Рис. 17 – Мощность рассеивания стабилитронов

Программа Color and Code имеет обширный сервис и позволяет решать комплекс задач разнообразного характера в одном приложении: находить номинал или вид радиокомпонентов по кодовой или цветовой маркировке, определять электрические параметры радиокомпонентов; выполнять радиотехнические расчеты; находить тип и выбирать нужные размеры радиокомпонентов; подбирать аналоги радиодеталей; изучать назначения ножек микросхем.

Описание программы Color and Code

В программе имеется возможность определять параметры большого спектра радиодеталей таких как – варикапов, транзисторов, конденсаторов, диодов, стабилитронов, резисторов, индуктивностей и чип-компонентов, как по кодовой цветовой, так и цветовой маркировке.

Цветовая маркировка резисторов


Кодовая и цветовая маркировка транзисторов

Можно определять тип транзистора по двум и четырем цветным точкам. Также есть функция определения по графическим символам, горизонтальное и вертикальное обозначение, смешанной и нестандартной.



Маркировка диодов, стабилитронов, варикапов

Диоды, стабилитроны, варикапы определяются по цветным кольцам от 1 до 3 колец.

Любая электронная схема вне зависимости от назначения имеет в своем составе большое количество элементов, которые регулируют и контролируют течение электрического тока по проводам. Именно регулирование напряжения играет важную роль в работе большинства модулей, потому что от этого параметра зависит стабильная и долгая работа цепи.

Для стабилизации входного напряжения на схемы был разработан специальный модуль, который является буквально важнейшей частью многих приборов. Импортные и отечественные стабилитроны используются в схемах с разными параметрами, поэтому имеется различная маркировка диодов на корпусе, что помогает определить и подобрать нужный вариант.

Немного подробнее о модуле и принципе его работы

Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.

Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.

Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.

Указание паспортных характеристик

Они же являются основными показателями отечественных и импортных стабилитронов, которыми необходимо руководствоваться при подборе стабилитрона под конкретную электронную цепь.

  1. UCT – указывает, какое номинальное значение модуль способен стабилизировать.
  2. ΔUCT – используется для указания диапазона возможного отклонения входящего тока в качестве безопасной амортизации.
  3. ICT – параметры тока, который может протекать при подаче номинального напряжения на модуль.
  4. ICT.МИН – показывает самое маленькое значение, которое способно протекать по стабилизатору. При этом протекающее напряжение по диоду будет находиться в диапазоне UCT ± ΔUCT.
  5. ICT.МАКС – модуль не способен выдерживать более высокое напряжение, чем это значение.

На фото ниже представлен классический вариант. Обратите внимание, что прямо на корпусе показано, где у него анод и катод. По кругу нарисована черная (реже встречается серая) полоска, которая располагается со стороны катода. Противоположная сторона – анод. Такой способ используется как для отечественных, так и для импортных диодов.


Дополнительная маркировка стеклянных моделей

Диоды в стеклянных корпусах имеют свои собственные обозначения, которые мы рассмотрим далее. Они настолько простые (в отличие от вариантов с пластиковыми корпусами), что практически сразу же запоминаются наизусть, нет необходимости каждый раз использовать справочник.

Цветовая маркировка используется для пластиковых диодов, например, для SOT-23. Твердый корпус модуля имеет два гибких вывода. На самом корпусе, рядом с вышеописанной полосочкой, дописываются таким же цветом несколько цифр, разделенных латинской буквой. Обычно запись имеет вид 1V3, 9V0 и так далее, разнообразие позволяет подобрать любые параметры по обозначению, как и в SMD.

Что же значит эта кодовая маркировка? Она показывает напряжение стабилизации, на которое рассчитан данный элемент. К примеру, 1V3 показывает нам, что это значение равно 1.3 В, второй же вариант – 9 вольт. Обычно чем больше сам корпус, тем большим стабилизирующим свойством он обладает. На фото ниже показан стабилитрон в стеклянном корпусе с маркировкой катода 5.1 В


Заключение

Правильный подбор параметров стабилитрона позволит получить стабильный ток, который из него подается на цепь. Обязательно подбирайте такие параметры предохранителя, используя соответствующий справочник, чтобы входное напряжение не испортило деталь, ему желательно находиться приблизительно в середине диапазона UCT ± ΔUCT.

Имея дома радиоэлектронную лабораторию, можно своими руками сделать самые различные приспособления для электрооборудования или сами приборы, что позволит значительно сэкономить на покупке техники. Важным элементом многих электрических схем приборов является стабилитрон.

Такой элемент (smd, смд) является необходимой частью многих электросхем. Благодаря обширной области применения, стабилитрон имеет различную маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную, информацию о данном элементе. Наша сегодняшняя статья поможет вам разобраться в том, какая цветовая маркировка встречается на корпусе (стеклянном и нет) импортных стабилитронов.

Что представляет собой данный элемент электрических схем

Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.

Вольт-амперная характеристика стабилитрона

Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.

Обратите внимание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.

Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:

  • UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
  • ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
  • IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
  • IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
  • IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.

Такая маркировка важна при выборе элемента под определенную электросхему.

Обозначения работы элемента электросхемы

Схематическое обозначение стабилитрона

Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:

Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.

Включение стабилитрона

На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.

Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.

Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.

Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.

Принцип функционирования стабилизационных диодов

Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.


Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.

Обратите внимание! При включении такого smd диода нужно соблюдать обратную полярность. Это означает, что подключение проводится анодом к минусу.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.

Как отличить стабилизационный диод от обычного полупроводника

Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции.
Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В).
Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:


Схема приставки мультиметра

В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В.
При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение.
При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.

Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.

Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой.
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4
Вот так можно выяснить, стабилитрон у вас или обычный диод.

Подробно о цветовой маркировке стабилизирующего диода


Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:

  • буква или цифра;
  • буква.

Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия.
Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:


Пример маркировки микросхем

Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.

Цветовая маркировка стабилитрона

  • первая полоска обозначает тип устройства;
  • вторая – полупроводник;
  • третья – что это за прибор, а также, какая у него проводимость;
  • четвертая — номер разработки;
  • пятая — модификация устройства.

Нужно отметить, что четвертая и пятая полоски не очень важны для выбора изделия.

Заключение

Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.

Как выбрать датчик движения для туалета Как правильно выбрать для дома радиовыключатель света с пультом, как подключить