Можно ли делить ноль на число? Почему нельзя делить на ноль? Наглядный пример

19.10.2019

Одним из самых первых правил, которое изучается в школе, является запрет деления на нуль. Почему нельзя делить на ноль? Это аксиома, которая появилась в элементарной алгебре. Ее изучают в общеобразовательных школах.

Со школьной скамьи до сих пор осталось предубеждение, что нельзя, хотя почему так - никто толком объяснить не может. Для понимания этого математического действия необходимо сначала разобраться в одном вопросе: что представляет собой бесконечность?

Понятие математической бесконечности

Это одна из категорий человеческого мышления, которая применяется для определения беспредельных, безграничных явлений, процессов и чисел. Математическая бесконечность представляет собой такую величину, которую теоретически и практически невозможно вычислить .

Все довольно прозаично: если число, которое делится на все меньшее и меньшее, то результатом будет являться большее значение. Чем оно меньше, тем больше значение. Чем больше разница между делимым и делителем, тем большим будет частное. Именно такую природу имеет бесконечность в математике.

Таким образом, если делитель стремиться к нолику, то конечное значение частного будет близко к бесконечности. А в случае, когда делитель будет нуль, то конечный результат вычисления будет эта самая "безмерность". Не сверхбольшое значение, не миллиарды миллионов, а бесконечность.

Поскольку до сих пор нет определения этой величины (если вообще она имеется), то физики и математики условно приняли, что делить на нолик нельзя. Не имеет смысла. Это самый простой ответ на наш вопрос. А для тех, кто не разобрался, постараемся рассказать подробнее.

Простейшие операции с числами

Из школьного курса математики все помнят, что существует четыре простейшие операции: умножение, деление, сложение и вычитание. Эти операции являются неравнозначными. У умножения и деления приоритет перед прибавлением и отниманием и так далее. Из математики следует, что основными операциями с числами становятся сложение и вычитание, а все остальные (в том числе и производные, и интегралы, и логарифмы) являются производными.

Для примера рассмотрим вычитание. Чтобы решить пример "10 - 7 = ...", необходимо из десяти единиц вычесть семь, а результат вычисления будет ответом. Поскольку сложение по релевантности стоит выше, то пример должен рассматриваться через правила сложения. Мы имеем такой вид примера: "Х + 7 = 10". Другими словами, к какой цифре необходимо добавить семь, чтобы получить десять?

Аналогично с делением. Выражение "10: 2 = ...." будет производным от выражения "2 Х = 10". Иначе говоря, что необходимо взять два раза, чтобы получить в итоге десять? Ответ очевиден. Теперь мы рассмотрим такой же пример, только с ноликом. Возьмем выражение "10: 0 = ...". Его обратная бинарная операция будет иметь вид "0 Х = 10". Тут мы видим ответ. Что надо умножить на "ничего" (в элементарной алгебре), чтобы в итоге получилось десять? Известно, что если ноль умножить на любую другую величину, то мы будем иметь "ничего". Числа, которое может давать другой конечный результат операции, попросту не существует.

Итогом является невозможность решения.

Почему умножать на нуль можно?

Почему нельзя делать на ноль, а умножать можно? Грубо говоря, именно с этого вопроса начинается вся высшая математика. Узнать ответ можно только тогда, когда появится возможность тщательно изучить формальные математические определения про манипуляции над математическими множествами.

Это не является большой сложностью. В университетах на начальных курсах проходят в первую очередь данную тему. Поэтому те, кто серьезно заинтересовался данным вопросом, могут проштудировать пару учебников по уравнениям с параметрами, линейным функциям и так далее.

Нестандартные приемы запретного деления

И наконец для тех, кто все-таки дочитал до этого места и решил получить окончательный ответ, мы приведем примеры тех случаев, когда можно делить на ноль.

На самом деле, все действия с числами в общей математике возможны. Можно даже доказать, что 1 = 2. Как, спросите вы? Совершенно просто. Путем простейших математических операций на уровне 7 класса:

Х 2 - Х 2 = Х 2 - Х 2

Х (Х - Х) = (Х + Х) (Х - Х)

А теперь рассмотрим основные теории, которые предполагают деление на "ничего".

Нестандартный анализ

Для самых неуемных специально придумали гипердействительные числа в нестандартном анализе. Согласно данной теории, имеются значения, которые не равны нулю, но в то же время являются самыми наименьшими действительными числами по модулю. Сложно? Вы же сами искали ответ.

Теория функций комплексной переменной

Расширенная комплексная плоскость позволяет делить на нуль. Это обусловлено тем, что бесконечность в ней - это не предельно-недостижимая величина, а конкретная точка на пространстве, которую можно увидеть в стереографической проекции.

Таким образом, можно сделать вывод: делить на нуль все-таки можно. Но не в пределах школьной математики. Надеемся, что мы смогли ответить на ваш вопрос. А в будущем вы сможете каждому объяснить эти математические хитросплетения самостоятельно.

Математическое правило относительно деления на ноль всем людям рассказывали еще в первом классе общеобразовательной школы. «Делить на ноль нельзя», - учили всех нас и запрещали под страхом подзатыльника делить на ноль и вообще обсуждать эту тему. Хотя некоторые учителя младших классов все-таки пробовали объяснить на простейших примерах, почему нельзя делить на ноль, но эти примеры были настолько нелогичны, что проще было просто запомнить это правило и не задавать лишних вопросов. Но все эти примеры были нелогичными по той причине, что логически объяснить это в первом классе нам учителя не могли, так как в первом классе мы и близко не знали, что такое уравнение, а логически это математическое правило объяснить можно только с помощью уравнений.

Все знают, что при делении любого числа на ноль выйдет пустота. Почему именно пустота, мы рассмотрим потом.

Вообще в математике только две процедуры с числами признаются независимыми. Это сложение и умножение. Остальные же процедуры считаются производные от этих двух процедур. Рассмотрим это на примере.

Скажите, сколько будет, например, 11-10? Мы все моментально ответим, что это будет 1. А как мы нашли такой ответ? Кто-то скажет, что это и так понятно, что будет 1, кто-то скажет, что от 11 яблок отнял 10 и посчитал, что получилось одно яблоко. С точки зрения логики все правильно, но вот по законам математики эта задача решается по-другому. Нужно вспомнить, что основными процедурами считаются сложение и умножение, поэтому нужно составить такое уравнение: х+10=11, а только потом х=11-10, х=1. Заметим, что сложение идет на первом месте, а только потом на основе уравнения мы можем отнимать. Казалось бы, зачем столько процедур? Ведь ответ и так очевиден. Но только такими процедурами можно объяснить невозможность деления на ноль.

Например, мы делаем такую математическую задачу: хотим 20 поделить на ноль. Итак, 20:0=х. Чтобы узнать, сколько же будет, нужно вспомнить, что процедура деления вытекает из умножения. Другими словами, деление-это производная процедура от умножения. Поэтому нужно составить уравнение из умножением. Итак, 0*х=20. Вот тут и тупик. Какое бы число мы не множили на ноль, все равно будет 0, но не 20. Вот отсюда и вытекает правило: делить на ноль нельзя. Ноль делить на любое число можно, а вот число на ноль - увы, нельзя.

Отсюда появляется еще один вопрос: а можно ли ноль делить на ноль? Итак, 0:0=х, значит 0*х=0. Это уравнение можно решить. Возьмем, например, х=4, значит 0*4=0. Получается, что если разделить ноль на ноль, получится 4. Но и здесь все не так просто. Если мы возьмем, например, х=12 или х=13, то выйдет тот же ответ (0*12=0). Вообще, какое бы мы число не подставляли, все равно выйдет 0. Поэтому, если 0:0, то получится бесконечность. Вот такая нехитрая математика. К сожалению, процедура деления ноль на ноль тоже бессмысленна.

Вообще, цифра ноль в математике самая интересная. К примеру, все знают, что любое число в нулевой степени дает единицу. Конечно, с таким примером в реальной жизни мы не встречаемся, но вот с делением на ноль жизненные ситуации попадаются очень часто. Поэтому запомним, что делить на ноль нельзя.

В школе нас всех учат простому правилу, что делить на ноль нельзя. При этом, когда мы задаем вопрос: «Почему?», нам отвечают: «Это просто правило и его надо знать». В этой статье я постараюсь вам объяснить, почему нельзя делить на ноль. Почему не правы те люди, которые говорят, что на ноль делить можно и тогда получится бесконечность.

Почему нельзя делить на ноль?

Формально, в математике, существует только два действия. Сложение и умножение чисел. Ну что же тогда с вычитанием и делением? Рассмотрим такой пример. 7-4=3, все мы знаем, что семь минус четыре будет равняться трём. На самом деле этот пример можно, формально, рассматривать, как способ решить уравнения x+4=7. То есть, мы подбираем такое число, которое в сумме с четверкой даст 7. Тогда мы не долго подумаем и поймем, что это число равно трём. То же самое с делением. Допустим 12/3. Это будет то же самое, что и х*3=12.

Мы подбираем такое число, которое при умножении на 3 даст нам 12. В данном случаем это получится четыре. Это достаточно очевидно. Что же с примерами вида 7/0. Что будет если мы запишем семь делить на ноль? Это значит, что мы, как будто, решаем уравнение вида 0*х=7. Но это уравнение не имеет решения, ведь если ноль умножить на любое число, то получиться всегда ноль. То есть решения нет. Это записывают либо словами решений нет, либо значком, который означает пустое множество.

Другими словами

Вот смысл этого правила. Делить на ноль нельзя, потому что соответствующее уравнение, ноль умножить на икс равное семи или любому числу, которое мы пытаемся делить на ноль, не имеет решений. Самые внимательные могут сказать, что если мы поделим ноль на ноль, то получится достаточно справедливо, что, если 0*X=0. Все замечательно, ноль умножаем на какое-то число, получаем ноль. Но тогда у нас решением может быть любое число. Если мы посмотрим х=1, 0*1=0, х=100500, 0*100500=0. Здесь подойдет любое число.

Так почему мы должны выбирать какое-то одно из них? У нас действительно нет каких-то соображений, по которым мы можем взять из этих чисел выбрать одно и сказать, что это решения уравнений. Поэтому решений бесконечно много и это тоже неоднозначная задача, в которой считается, что решений нет.

Бесконечность

Выше я рассказал вам причины, по которым делить нельзя, теперь хочу поговорить с вами о . Давайте попробуем с осторожностью подойти к операции деления на ноль. Поделим число 5 сначала на два. Мы знаем, что получится десятичная дробь 2.5. Теперь уменьшим делитель и поделим 5 на 1, будет 5. Теперь 5 мы поделим на 0,5. Это то же самое, что и пять поделим на одну вторую, или то же самое, что и 5*2, то будет 10. Обратите внимание, результат деления, то есть частное, увеличивается: 2,5, 5, 10.

Теперь давайте поделим 5 на 0.1, это будет то же самое, что и 5*10=50, частная снова увеличилась. При этом делитель мы уменьшали. Если мы поделим 5 на 0.01, это будет, то же самое, что и 5*100=500. Смотрите. Чем меньше мы делаем делитель, тем больше становится частное. Если мы 5 поделим на 0.00001, получиться 500000.

Подведем итог

Что же тогда такое деление на ноль, если смотреть вот в этом смысле? Заметим, как мы уменьшали наше частное? Если нарисовать ось, то на ней видно, что у нас сначала была двойка, потом единичка, потом 0.5, 0.1, и так далее. Мы приближались к нолю все ближе и ближе справа, но до ноля мы так и не дошли. Берем все меньше и меньше число и делим на него наше частное. Становится все больше и больше. В данном случае пишут, что мы делим 5 на Х, где икс бесконечно мал. То есть он становиться все ближе и ближе к нолю. Вот как раз-таки в этом случае при делении пятерки на Х мы получим бесконечность. Бесконечно большое число. Здесь возникает нюанс.

Если мы приближаемся к нолю справа, то это бесконечно мало у нас будет положительным, и мы получаем плюс бесконечность. Если же мы приближаемся к иксу слева, то есть если мы сначала поделим на -2, потом на -1, на -0.5, на -0.1 и так далее. У нас будет получаться отрицательное частное. И тогда пять деленное на икс, где икс будет бесконечно малым, но уже слева, будет равно минус бесконечности. В данном случае пишут: икс стремится к нолю справа, 0+0, показывая, что к нолю мы стремимся справа. Допустим если мы к тройке стремились справа, в данном случае пишут икс стремится слева. Соответственно к тройке мы бы стремились слева, записывая это как икс стремится к 3-0.

Как график функций может помочь

Понять это лучше помогает график функции, который мы проходили еще все в школе. Функция называется обратная зависимость, а график её это гипербола. Выглядит гипербола следующим образом. Это кривая, асимптотами которой являются ось икс и игрек. Асимптота-это прямые, к которым кривая стремится, но никогда их не достигнет. Такая вот математическая драма. Мы видим, что чем ближе мы подходим к нолю, тем больше становится наше значение игрек. Чем меньше становится икс, то есть, при стремлении, иксе к нолю справа игрек становиться все больше и больше, и устремляется в плюс бесконечность. Соответственно, при стремлении к нолю слева, когда икс стремится к нолю слева, т.е икс стремиться к 0-0, игрек стремится у нас к минус бесконечности. По-правильному это записывается так. Игрек стремится к минус бесконечности, при Х стремящимся к нолю слева. Соответственно мы запишем игрек стремится к плюс бесконечности, при иксе стремящимся к нолю справа. То есть, по сути, мы не делим на ноль, мы делим на бесконечно малую величину.

И те, кто говорят, что делить на ноль можно, мы просто получим бесконечность, они просто имею в виду, что делить можно не на ноль, а можно делить на число близкое к нолю, то есть на бесконечно малую величину. Тогда мы получим плюс бесконечность, если мы делим на бесконечно малое положительное и минус бесконечность мы делим на бесконечно малое отрицательное.

Я надеюсь, что эта статья помогла вам разобраться в вопросе, который мучает большинство с детства, почему же нельзя делить на ноль. Почему нас заставляют учить какое-то правило, а ничего не объясняют. Надеюсь статья помогла вам разобраться в том, что действительно на ноль делить нельзя, а те, кто говорят, что на ноль делиться можно, на самом деле имеют в виду, что можно делить на бесконечно малую величину.

Ещё в школе учителя нам всем старались вбить в голову простейшее правило: «Любое число, умноженное на ноль, равняется нулю!» , – но всё равно вокруг него постоянно возникает куча споров. Кто-то просто запомнил правило и не забивает себе голову вопросом «почему?». «Нельзя и всё тут, потому что в школе так сказали, правило есть правило!» Кто-то может исписать полтетради формулами, доказывая это правило или, наоборот, его нелогичность.

Кто в итоге прав

Во время этих споров оба человека, имеющие противоположные точки зрения, смотрят друг на друга, как на барана, и доказывают всеми силами свою правоту. Хотя, если посмотреть на них со стороны, то можно увидеть не одного, а двух баранов, упирающихся друг в друга рогами. Различие между ними лишь в том, что один чуть менее образован, чем второй. Чаще всего, те, кто считают это правило неверным, стараются призвать к логике вот таким способом:

У меня на столе лежит два яблока, если я положу к ним ноль яблок, то есть не положу ни одного, то от этого мои два яблока не исчезнут! Правило нелогично!

Действительно, яблоки никуда не исчезнут, но не из-за того, что правило нелогично, а потому что здесь использовано немного другое уравнение: 2+0 = 2. Так что такое умозаключение отбросим сразу - оно нелогично, хоть и имеет обратную цель - призвать к логике.

Это интересно: Как найти разность чисел в математике?

Что такое умножение

Изначально правило умножения было определено только для натуральных чисел: умножение - это число, прибавленное к самому себе определённое количество раз, что подразумевает натуральность числа. Таким образом, любое число с умножением можно свести вот к такому уравнению:

  • 25×3 = 75
  • 25 + 25 + 25 = 75
  • 25×3 = 25 + 25 + 25
  • Из этого уравнения следует вывод, что умножение - это упрощённое сложение .

    Что такое ноль

    Любой человек с самого детства знает: ноль - это пустота, Несмотря на то, что эта пустота имеет обозначение, она не несёт за собой вообще ничего. Древние восточные учёные считали иначе - они подходили к вопросу философски и проводили некие параллели между пустотой и бесконечностью и видели глубокий смысл в этом числе. Ведь ноль, имеющий значение пустоты, встав рядом с любым натуральным числом, умножает его в десять раз. Отсюда и все споры по поводу умножения - это число несёт в себе столько противоречивости, что становится сложно не запутаться. Кроме того, ноль постоянно используется для определения пустых разрядов в десятичных дробях, это делается и до, и после запятой.

    Можно ли умножать на пустоту

    Умножать на ноль можно, но бесполезно, потому что, как ни крути, но даже при умножении отрицательных чисел всё равно будет получаться ноль. Достаточно просто запомнить это простейшее правило и никогда больше не задаваться этим вопросом. На самом деле всё проще, чем кажется на первый взгляд. Нет никаких скрытых смыслов и тайн, как считали древние учёные. Ниже будет приведено самое логичное объяснение, что это умножение бесполезно, ведь при умножении числа на него всё равно будет получаться одно и то же - ноль.

    Это интересно: что такое модуль числа?

    Возвращаясь в самое начало, к доводу по поводу двух яблок, 2 умножить на 0 выглядит вот так:

  • Если съесть по два яблока пять раз, то съедено 2×5 = 2+2+2+2+2 = 10 яблок
  • Если их съесть по два трижды, то съедено 2×3 = 2+2+2 = 6 яблок
  • Если съесть по два яблока ноль раз, то не будет съедено ничего - 2×0 = 0×2 = 0+0 = 0
  • Ведь съесть яблоко 0 раз - это означает не съесть ни одного. Это будет понятно даже самому маленькому ребёнку. Как ни крути - выйдет 0, двойку или тройку можно заменить абсолютно любым числом и выйдет абсолютно то же самое. А если проще говоря, то ноль - это ничего , а когда у вас ничего нет , то сколько ни умножай - всё равно будет ноль . Волшебства не бывает, и из ничего не получится яблоко, даже при умножении 0 на миллион. Это самое простое, понятное и логичное объяснение правила умножения на ноль. Человеку, далёкому от всех формул и математики будет достаточно такого объяснения, для того чтобы диссонанс в голове рассосался, и всё встало на свои места.

    Из всего вышеперечисленного вытекает и другое важное правило:

    На ноль делить нельзя!

    Это правило нам тоже с самого детства упорно вбивают в голову. Мы просто знаем, что нельзя и всё, не забивая себе голову лишней информацией. Если вам неожиданно зададут вопрос, по какой причине запрещено делить на ноль, то большинство растеряется и не сможет внятно ответить на простейший вопрос из школьной программы, потому что вокруг этого правила не ходит столько споров и противоречий.

    Все просто зазубрили правило и не делят на ноль, не подозревая, что ответ кроется на поверхности. Сложение, умножение, деление и вычитание - неравноправны, полноценны из перечисленного только умножение и сложение, а все остальные манипуляции с числами строятся из них. То есть запись 10: 2 является сокращением уравнения 2 * х = 10. Значит, запись 10: 0 такое же сокращение от 0 * х = 10. Получается, что деление на ноль – это задание найти число, умножая которое на 0, получится 10. А мы уже разобрались, что такого числа не существует, значит, у этого уравнения нет решения, и оно будет априори неверным.

    Расскажу тебе позволь,

    Чтобы не делил на 0!

    Режь 1 как хочешь, вдоль,

    Только не дели на 0!

    obrazovanie.guru

    Деление на ноль. Увлекательная математика

    Число 0 можно представить, как некую границу, отделяющую мир реальных чисел от мнимых или отрицательных. Благодаря двусмысленному положению, многие операции с этой числовой величиной не подчиняются математической логике. Невозможность деления на нуль – яркий тому пример. А разрешенные арифметические действия с нулем могут быть выполнены с помощью общепринятых определений.

    История нуля

    Ноль является точкой отсчета во всех стандартных системах исчисления. Европейцы стали использовать это число сравнительно недавно, но мудрецы Древней Индии пользовались нулем за тысячу лет до того, как пустое число стало регулярно использоваться европейскими математиками. Ещё раньше индийцев ноль являлся обязательной величиной в числовой системе майя. Этот американский народ использовал двенадцатеричную систему исчисления, а нулем у них начинался первый день каждого месяца. Интересно, что у майя знак, обозначающий «ноль», полностью совпадал со знаком, определяющим «бесконечность». Таким образом, древние майя делали вывод о тождественности и непознаваемости этих величин.

    Математические действия с нулем

    Стандартные математические операции с нулем можно свести к нескольким правилам.

    Сложение: если к произвольному числу добавить ноль, то оно не изменит своего значения (0+x=x).

    Вычитание: при вычитании нуля из любого числа значение вычитаемого остается неизменным (x-0=x).

    Умножение: любое число, умноженное на 0, дает в произведении 0 (a*0=0).

    Деление: ноль можно разделить на любое число, не равное нулю. При этом значение такой дроби будет 0. А деление на ноль запрещено.

    Возведение в степень. Это действие можно выполнить с любым числом. Произвольное число, возведенное в нулевую степень, даст 1 (x 0 =1).

    Ноль в любой степени равен 0 (0 а =0).

    При этом сразу возникает противоречие: выражение 0 0 не имеет смысла.

    Парадоксы математики

    О том, что деление на ноль невозможно, многие знают со школьной скамьи. Но объяснить причину такого запрета почему-то не получается. В самом деле, почему формула деления на ноль не существует, а вот другие действия с этим числом вполне разумны и возможны? Ответ на этот вопрос дают математики.

    Все дело в том, что привычные арифметические действия, которые школьники изучают в начальных классах, на самом деле далеко не так равноправны, как нам кажется. Все простые операции с числами могут быть сведены к двум: сложению и умножению. Эти действия составляют суть самого понятия числа, а остальные операции строятся на использовании этих двух.

    Сложение и умножение

    Возьмем стандартный пример на вычитание: 10-2=8. В школе его рассматривают просто: если от десяти предметов отнять два, останется восемь. Но математики смотрят на эту операцию совсем по-другому. Ведь такой операции, как вычитание, для них не существует. Данный пример можно записать и другим способом: х+2=10. Для математиков неизвестная разность – это просто число, которое нужно добавить к двум, чтобы получилось восемь. И никакого вычитания здесь не требуется, нужно просто найти подходящее числовое значение.

    Умножение и деление рассматриваются так же. В примере 12:4=3 можно понять, что речь идет о разделении восьми предметов на две равные кучки. Но в действительности это просто перевернутая формула записи 3х4=12.Такие примеры на деление можно приводить бесконечно.

    Примеры на деление на 0

    Вот тут и становится понемногу понятным, почему нельзя делить на ноль. Умножение и деление на ноль подчиняется своим правилам. Все примеры на деление этой величины можно сформулировать в виде 6:0=х. Но это же перевернутая запись выражения 6 * х=0. Но, как известно, любое число, умноженное на 0, дает в произведении только 0. Это свойство заложено в самом понятии нулевой величины.

    Выходит, что такого числа, которое при умножении на 0 дает какую-либо осязаемую величину, не существует, то есть данная задача не имеет решения. Такого ответа бояться не следует, это естественный ответ для задач такого типа. Просто запись 6:0 не имеет никакого смысла, и она ничего не может объяснить. Кратко говоря, это выражение можно объяснить тем самым бессмертным «деление на ноль невозможно».

    Существует ли операция 0:0? Действительно, если операция умножения на 0 законна, можно ли ноль разделить на ноль? Ведь уравнение вида 0х 5=0 вполне легально. Вместо числа 5 можно поставить 0, произведение от этого не поменяется.

    Действительно, 0х0=0. Но поделить на 0 по-прежнему нельзя. Как было сказано, деление – это просто обратная операция умножения. Таким образом, если в примере 0х5=0, нужно определить второй множитель, получаем 0х0=5. Или 10. Или бесконечность. Деление бесконечности на ноль - как вам это понравится?

    Но если в выражение подходит любое число, то оно не имеет смысла, мы не можем из бесконечного множества чисел выбрать какое-то одно. А раз так, это значит и выражение 0:0 не имеет смысла. Получается, что на ноль нельзя делить даже сам ноль.

    Высшая математика

    Деление на ноль - это головная боль для школьной математики. Изучаемый в технических вузах математический анализ немного расширяет понятие задач, которые не имеют решения. Например, к уже известному выражению 0:0 добавляются новые, которые не имеют решения в школьных курсах математики:

  • бесконечность, разделенная на бесконечность: ∞:∞;
  • бесконечность минус бесконечность: ∞−∞;
  • единица, возведенная в бесконечную степень: 1 ∞ ;
  • бесконечность, умноженная на 0: ∞*0;
  • некоторые другие.
  • Элементарными методами решить такие выражения невозможно. Но высшая математика благодаря дополнительным возможностям для ряда подобных примеров дает конечные решения. Особенно это видно в рассмотрении задач из теории пределов.

    Раскрытие неопределенности

    В теории пределов значение 0 заменяется условной бесконечно малой переменной величиной. А выражения, в которых при подставлении нужного значения получается деление на ноль, преобразовываются. Ниже представлен стандартный пример раскрытия предела при помощи обычных алгебраических преобразований:

    Как видно в примере, простое сокращение дроби приводит ее значение к вполне рациональному ответу.

    При рассмотрении пределов тригонометрических функций их выражения стремятся свести к первому замечательному пределу. При рассмотрении пределов, в которых знаменатель обращается в 0 при подставлении предела, используют второй замечательный предел.

    Метод Лопиталя

    В некоторых случаях пределы выражений можно заменить пределом их производных. Гийом Лопиталь – французский математик, основоположник французской школы математического анализа. Он доказал, что пределы выражений равны пределам производных этих выражений. В математической записи его правило выглядит следующим образом.

    В настоящее время метод Лопиталя с успехом применяется при решении неопределенностей типа 0:0 или ∞:∞.

    Математика: деление и умножение в столбик

    Умножение и деление однозначных чисел не составит труда для любого школьника, выучившего таблицу умножения. Она входит в программу математики за 2 класс. Другое дело – когда необходимо произвести математические действия с многозначными числами. Начинают такие действия на уроках математики в 3 классе. Разбираем новую тему «Деление и умножение в столбик»

    Умножение многозначных чисел

    Делить и умножать сложные числа проще всего столбиком. Для этого нужно разряды числа: сотни, десятки, единицы:

    235 = 200 (сотни) + 30 (десятки) + 5 (единицы).

    Это нам понадобится для правильной записи чисел при умножении.

    При записи двух чисел, которые нужно перемножить, их записывают друг под другом, размещая числа по разрядам (единицы - под единицами, десятки под десятками). При умножении многозначного числа на однозначное трудностей не возникнет:

    Запись ведется так:

    Вычисление ведут с конца – с разряда единиц. При умножении на первую цифру – из разряда единиц – запись тоже ведут с конца:

    • 3 х 5 = 15, записываем 5 (единицы), десятки (1) запоминаем;
    • 2 х 5 = 10 и 1 десяток, который мы запомнили, всего 11, записываем 1 (десятки), сотни (1) запоминаем;
    • поскольку дальше разрядов у нас в примере нет, записываем сотни (1 – которую запоминали).

    Следующее действие – умножаем на вторую цифру (разряд десятков):

    Поскольку умножали мы на цифру из разряда десятков, записывать начнем так же, с конца, начиная со второго места справа (там, где разряд десятков).

    1. записывать столбиком умножение нужно по разрядам;

    2. вычисления производить, начиная с единиц;

    3. записывать итог по разрядам – если умножаем на цифру из разряда единиц – запись начинаем с последнего столбика, из разряда – десятков – с этого столбца и ведем запись.

    Правило, действующее для умножения в столбик на двухзначное число, действует и для чисел с большим количеством разрядов.

    Чтобы легче было запомнить правила записи примеров умножения многозначных чисел в столбик, можно сделать карточки, выделив разными цветами разные разряды.

    Если производится в столбик умножение чисел с нулями на конце, их не принимают во внимание при вычислении, а запись ведут так, чтобы значащая цифра была под значащей, а нули остаются справа. После проведения вычислений их количество дописывают справа:

    Математик Яков Трахтенберг разработал систему быстрого счета. Метод Трахтенберга облегчает умножение, если применять определенную систему вычислений. Например, умножение на 11. Для получения результата нужно прибавить цифру к соседней:

    2,253 х 11 = (0 + 2) (2 + 2) (2 + 5) (5 + 3) (3 + 0) = 2 + 4 + 7 + 8 + 3 = 24,783.

    Доказать истинность просто: 11 = 10 + 1

    2,253 х 10 + 2,253 = 22,530 + 2,253 = 24,783.

    Алгоритмы вычислений для разных чисел разные, но они позволяют производить вычисления быстро.

    Видео «Умножение столбиком»

    Деление многозначных чисел

    Деление столбиком может показаться детям сложным, однако запомнить алгоритм несложно. Рассмотрим деление многозначных чисел на однозначное число:
    215: 5 = ?
    Записывается вычисление следующим образом:

    Под делителем будем записывать результат. Деление выполняется следующим образом: сравниваем крайнюю левую цифру делимого с делителем: 2 меньше 5, разделить 2 на 5 мы не можем, поэтому берем еще одну цифру: 21 больше 5, при делении получается: 20: 5 = 4 (остаток 1)

    Сносим к полученному остатку следующую цифру: получаем 15. 15 больше 5, делим: 15: 5 = 3

    Решение будет выглядеть таким образом:

    Так производится деление без остатка. По тому же алгоритму производится деление в столбик с остатком с той лишь разницей, что в последней записи будет указан не ноль, а остаток.

    Если необходимо произвести деление трехзначных чисел в столбик на двухзначное, порядок действий будет таким же, как при делении на однозначное число.

    Приведем примеры на деление:


    Аналогично проводится вычисление при делении многозначного числа на двузначное с остатком: 853: 15 = 50 и (3) остаток
    Обратите внимание на эту запись: если при промежуточных вычислениях в результате получается 0, но пример не решен до конца, ноль не записывается, а сразу сносится следующая цифра, и вычисление производится дальше.

    Поможет усвоить правила деления многозначных чисел в столбик видеоурок. Запомнив алгоритм и проследив последовательность записи вычислений, примеры на умножение и деление в столбик в 4 классе уже не будут казаться такими сложными.

    Важно! Следите за записью: разряды должны записываться под разрядами, в столбик.

    Видео «Деление в столбик»

    Если во 2 классе ребенок выучил таблицу умножения, примеры на умножение и деление двузначного или трехзначного числа на уроках математики за 4 класс не вызовет у него трудностей.

    razvitiedetei.info

    Правила умножения и деления

    После того, как выучена таблица умножения, школьникам объясняют правила умножения и деления, учат использовать их при вычислении математических выражений.

    Что такое умножение? Это умное сложение

    При сложении и вычитании, умножении и делении чисел в простых выражениях у детей не возникает трудностей:

    В таких вычислениях необходимо только знать правила сложения и вычитания и таблицу умножения.
    Когда начинаются более сложные упражнения, примеры состоят из двух и более действий, да еще и со скобками, при решении у детей появляются ошибки. И главная из них – неправильный порядок действий.

    Да какая разница?

    Действительно, настолько ли это важно – какое действие в примере выполнить первым, какое вторым?

    Если мы будем выполнять действия по порядку, получим:

    Получили два разных ответа. Но так быть не должно, следовательно, порядок выполнения действий имеет значение. Тем более, если в выражении имеются скобки:

    Пробуем решить двумя способами:

    Ответы разные, а для того чтобы определить порядок действий, в выражении стоят скобки – они показывают, какое действие нужно выполнить первым. Значит, правильным будет такое решение:

    Другого решения у ответа у примера быть не должно.

    Что важнее – умножение или сложение?

    При решении примеров
    Расставь порядок действий.
    Умножить или разделить – на первом месте.

    Для выражений, в которых присутствуют не сложение либо вычитание, а умножение или деление, действует то же правило: все действия с числами выполняются по порядку, начиная с левого:

    Сложнее случай – когда в одной задаче встречаются умножение или деление со сложением или вычитанием. Каков порядок вычислений тогда?

    Если выполнять все действия по порядку, сначала деление, затем сложение. В итоге получим:

    Значит, пример решен правильно. А если в нем будут скобки?

    То, что заключено в скобки, всегда в приоритете. Для того они и стоят в выражении. Поэтому порядок вычислений в подобных выражениях будет следующим:

  • Раскрываем скобки. Если их несколько, делаем вычисления для каждых.
  • Умножение либо деление.
  • Вычисляем конечный результат, выполняя действия слева направо.
  • Пример:
    81: 9 + (6 – 2) + 3 = ?

    81: 9 + (6 – 2) + 3 = 16.

    А что будет приоритетным: умножение - или деление, вычитание - или сложение, если оба действия встречаются в задаче? Ничего, они равны, в таком случае действует первое правило – действия производятся одно за другим, начиная слева.

    Алгоритм решения выражения:

  • Анализируем задачу – есть ли скобки, какие математические действия нужно будет выполнить.
  • Выполняем вычисления в скобках.
  • Делаем умножение и деление.
  • Выполняем сложение и вычитание.
  • 28: (11 – 4) + 18 – (25 – 8) = ?

    1. 11 – 4 = 7;
    2. 25 – 8 = 17;
    3. 28: 7 = 4;
    4. 4 + 18 = 22;
    5. 22 – 17 = 5.

    Ответ: 28: (11 – 4) + 18 – (25 – 8) = 5.

    Важно! Если в выражении есть буквенные обозначения, порядок действий остается прежним.

    Круглый нуль такой хорошенький,
    Но не значит ничегошеньки.

    В примерах нуль как число не встречается, но он может быть результатом какого-либо промежуточного действия, например:

    При умножении на 0 правило гласит, что в результате всегда получится 0. Почему? Объяснить можно просто: что такое умножение? Это одно и то же число, сложенное с себе подобным несколько раз. Иначе:

    0 × 5 = 0 + 0 + 0 + 0 + 0 = 0;

    Деление на 0 бессмысленно, а деление нуля на любое число даст в результате всегда 0:

    0: 5 = 0.

    Напомним другие арифметические действия с нулем:

    Умножение и деление на единицу

    Математические действия с единицей отличаются от действий с нулем. При умножении или делении числа на 1 получается само первоначальное число:

    7 × 1 = 7;

    7: 1 = 7.

    Конечно, если у вас есть 7 друзей, и каждый подарил вам по конфете, у вас будет 7 конфет, а если вы их съели в одиночестве, то есть поделились лишь с самим собой, то все они и оказались в вашем желудке.

    Вычисления с дробями, степенями и сложными функциями

    Это сложные случаи вычислений, которые не рассматриваются в рамках начальной школы.

    Умножение простых дробей друг на друга не представляется сложными, достаточно лишь перемножить числитель на числитель, а знаменатель – на знаменатель.
    Пример:

  • 2 × 3 = 6 - числитель
  • 5 × 8 = 40 - знаменатель
  • После сокращения получаем:\(\) = \(\).

    Деление простых дробей не так сложно, как кажется на первый взгляд. Достаточно лишь преобразовать задачу – превратить ее в пример с умножением. Сделать это просто – нужно перевернуть дробь так, чтобы знаменатель стал числителем, а числитель – знаменателем.
    Пример:

    Если в задаче встречается число, представленное в виде степени, его значение вычисляется прежде всех остальных (можете представить, что оно заключено в скобки – а действия в скобках выполняются первыми).
    Пример:

    Преобразовав число, представленное в виде степени, в обычное выражение с действием умножения, решить пример оказалось просто: сначала умножение, затем вычитание (потому что в скобках) и деление.

  • Действия с корнями, логарифмами, функциями
  • Поскольку такие функции изучаются только в рамках старшей школы, рассматривать их мы не будем, достаточно только сказать, что они, как и в случае со степенями, имеют приоритет при вычислении: сначала находится значение данного выражения, затем порядок вычислений обычный – скобки, умножение с делением, далее по порядку слева направо.

    Главные правила по теме

    Говоря о главных и неглавных математических действиях, нужно сказать, что четыре основных действия можно свести к двум: сложение и умножение. Если вычитание и деление представляется для школьников сложным, правила сложения и умножения они запоминают быстрее. Действительно, выражение 5 – 2 можно записать иначе:

    В случаях с умножением действуют правила, схожие со свойствами сложения: от перестановки множителей произведение не изменится:

    При решении сложных задач первое действие - то, которое выделено скобками, затем - деление или умножение, потом все остальные действия по порядку.
    Когда нужно решить примеры без скобок, вначале выполняется умножение или деление, далее - вычитание либо сложение.

    Умножение и деление целых чисел

    При умножении и делении целых чисел применяется несколько правил. В данном уроке мы рассмотрим каждое из них.

    При умножении и делении целых чисел следует обращать внимание на знаки чисел. От них будет зависеть, какое правило применять. Также необходимо изучить несколько законов умножения и деления. Изучение этих правил позволяет избежать некоторые досадные ошибки в будущем.

    Законы умножения

    Некоторые из законов математики мы рассматривали в уроке законы математики. Но мы рассмотрели не все законы. В математике немало законов, и разумнее будет изучать их последовательно по мере необходимости.

    Для начала вспомним из чего состоит умножение. Умножение состоит из трёх параметров: множимого , множителя и произведения . Например в выражении 3 × 2 = 6 , число 3 - это множимое, число 2 - множитель, число 6 - произведение.

    Множимое показывает, что именно мы увеличиваем. В нашем примере мы увеличиваем число 3.

    Множитель показывает во сколько раз нужно увеличить множимое. В нашем примере множитель это число 2. Этот множитель показывает во сколько раз нужно увеличить множимое 3. То есть, в ходе операции умножения число 3 будет увеличено в два раза.

    Произведение это собственно результат операции умножения. В нашем примере произведение это число 6. Это произведение является результатом умножения 3 на 2.

    Выражение 3 × 2 также можно понимать, как сумму двух троек. Множитель 2 в данном случае будет показывать сколько раз нужно взять число 3:

    Таким образом, если взять число 3 два раза подряд, получится число 6.

    Переместительный закон умножения

    Множимое и множитель называют одним общим словом – сомножители . Переместительный закон умножения выглядит следующим образом:

    От перестановки мест сомножителей произведение не меняется.

    Проверим так ли это. Умножим к примеру 3 на 5. Здесь 3 и 5 это сомножители.

    Теперь поменяем местами сомножители:

    В обоих случаях, мы получаем ответ 15, значит между выражениями 3 × 5 и 5 × 3 можно поставить знак равенства, поскольку они равны одному тому же значению:

    А с помощью переменных переместительный закон умножения можно записать так:

    где a и b - сомножители

    Сочетательный закон умножения

    Этот закон говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий.

    К примеру выражение 3 × 2 × 4 состоит из нескольких сомножителей. Чтобы его вычислить, можно перемножить 3 и 2, затем полученное произведение умножить на оставшееся число 4. Выглядеть это будет так:

    3 × 2 × 4 = (3 × 2) × 4 = 6 × 4 = 24

    Это был первый вариант решения. Второй вариант состоит в том, чтобы перемножить 2 и 4, затем полученное произведение умножить на оставшееся число 3. Выглядеть это будет так:

    3 × 2 × 4 = 3 × (2 × 4) = 3 × 8 = 24

    В обоих случаях мы получаем ответ 24. Поэтому между выражениями (3 × 2) × 4 и 3 × (2 × 4) можно поставить знак равенства, поскольку они равны одному и тому же значению:

    (3 × 2) × 4 = 3 × (2 × 4)

    а с помощью переменных сочетательный закон умножения можно записать так:

    a × b × c = (a × b) × c = a × (b × c)

    где вместо a, b, c могут стоять любые числа.

    Распределительный закон умножения

    Распределительный закон умножения позволяет умножить сумму на число. Для этого каждое слагаемое этой суммы умножается на это число, затем полученные результаты складывают.

    Например, найдём значение выражения (2 + 3) × 5

    Выражение находящееся в скобках является суммой. Эту сумму нужно умножить на число 5. Для этого каждое слагаемое этой суммы, то есть числа 2 и 3 нужно умножить на число 5, затем полученные результаты сложить:

    (2 + 3) × 5 = 2 × 5 + 3 × 5 = 10 + 15 = 25

    Значит значение выражения (2 + 3) × 5 равно 25 .

    С помощью переменных распределительный закон умножения записывается так:

    (a + b) × c = a × c + b × c

    где вместо a, b, c могут стоять любые числа.

    Закон умножения на ноль

    Этот закон говорит о том, что если в любом умножении имеется хотя бы один ноль, то в ответе получится ноль.

    Произведение равно нулю, если хотя бы один из сомножителей равен нулю.

    Например, выражение 0 × 2 равно нулю

    В данном случае число 2 является множителем и показывает во сколько раз нужно увеличить множимое. То есть, во сколько раз увеличить ноль. Буквально это выражение читается как «увеличить ноль в два раза». Но как можно увеличить ноль в два раза, если это ноль?

    Другими словами, если «ничего» увеличить в два раза или даже в миллион раз, всё равно получится «ничего».

    И если в выражении 0 × 2 поменять местами сомножители, опять же получится ноль. Это мы знаем из предыдущего переместительного закона:

    Примеры применения закона умножения на ноль:

    2 × 5 × 0 × 9 × 1 = 0

    В последних двух примерах имеется несколько сомножителей. Увидев в них ноль, мы сразу в ответе поставили ноль, применив закон умножения на ноль.

    Мы рассмотрели основные законы умножения. Далее рассмотрим умножение целых чисел.

    Умножение целых чисел

    Пример 1. Найти значение выражения −5 × 2

    Это умножение чисел с разными знаками. −5 является отрицательным числом, а 2 – положительным. Для таких случаев нужно применять следующее правило:

    Чтобы перемножить числа с разными знаками, нужно перемножить их модули, и перед полученным ответом поставить минус.

    −5 × 2 = − (|−5| × |2|) = − (5 × 2) = − (10) = −10

    Обычно записывают покороче: −5 × 2 = −10

    Любое умножение может быть представлено в виде суммы чисел. Например, рассмотрим выражение 2 × 3. Оно равно 6.

    Множителем в данном выражение является число 3. Этот множитель показывает во сколько раз нужно увеличить двойку. Но выражение 2 × 3 также можно понимать как сумму трёх двоек:

    То же самое происходит и с выражением −5 × 2. Это выражение может быть представлено в виде суммы

    А выражение (−5) + (−5) равно −10, и мы это знаем из прошлого урока. Это сложение отрицательных чисел. Напомним, что результат сложения отрицательных чисел есть отрицательное число.

    Пример 2. Найти значение выражения 12 × (−5)

    Это умножение чисел с разными знаками. 12 – положительное число, (−5) – отрицательное. Опять же применяем предыдущее правило. Перемножаем модули чисел и перед полученным ответом ставим минус:

    12 × (−5) = − (|12| × |−5|) = − (12 × 5) = − (60) = −60

    Обычно записывают короче: 12 × (−5) = −60

    Пример 3. Найти значение выражения 10 × (−4) × 2

    Это выражение состоит из нескольких сомножителей. Сначала перемножим 10 и (−4), затем полученное число умножим на 2. Попутно применим ранее изученные правила:

    10 × (−4) = −(|10| × |−4|) = −(10 × 4) = (−40) = −40

    Второе действие:

    −40 × 2 = −(|−40 | × | 2|) = −(40 × 2) = −(80) = −80

    Значит значение выражения 10 × (−4) × 2 равно −80

    Обычно записывают короче: 10 × (−4) × 2 = −40 × 2 = −80

    Пример 4. Найти значение выражения (−4) × (−2)

    Это умножение отрицательных чисел. В таких случаях нужно применять следующее правило:

    Чтобы перемножить отрицательные числа, нужно перемножить их модули и перед полученным ответом поставить плюс

    (−4) × (−2) = |−4| × |−2| = 4 × 2 = 8

    Плюс по традиции не записываем, поэтому просто записываем ответ 8.

    Обычно записывают короче (−4) × (−2) = 8

    Возникает вопрос почему при умножении отрицательных чисел вдруг получается положительное число. Давайте попробуем доказать, что (−4) × (−2) равно 8 и ни чему другому.

    Сначала запишем следующее выражение:

    Заключим его в скобки:

    Прибавим к этому выражению наше выражение (−4) × (−2). Его тоже заключим в скобки:

    Всё это приравняем к нулю:

    (4 × (−2)) + ((−4) × (−2)) = 0

    Теперь начинается самое интересное. Суть в том, что мы должны вычислить левую часть этого выражения, и в результате получить 0.

    Итак, первое произведение (4 × (−2)) равно −8. Запишем в нашем выражении число −8 вместо произведения (4 × (−2))

    Теперь вместо второго произведения временно поставим многоточие

    Теперь внимательно смотрим на выражение −8 + […] = 0. Какое число должно стоять вместо многоточия, чтобы соблюдалось равенство? Ответ напрашивается сам. Вместо многоточия должно стоять положительное число 8 и никакое другое. Только так будет соблюдаться равенство. Ведь −8 + 8 равно 0.

    Возвращаемся к выражению −8 + ((−4) × (−2)) = 0 и вместо произведения ((−4) × (−2)) записываем число 8

    Пример 5. Найти значение выражения −2 × (6 + 4)

    Применим распределительный закон умножения, то есть умножим число −2 на каждое слагаемое суммы (6 + 4)

    −2 × (6 + 4) = (−2 × 6) + (−2 × 4)

    Теперь вычислим выражения, находящиеся в скобках. Затем полученные результаты сложим. Попутно применим ранее изученные правила. Запись с модулями можно пропустить, чтобы не загромождать выражение

    −2 × 6 = −(2 × 6) = −(12) = −12

    −2 × 4 = −(2 × 4) = −(8) = −8

    Третье действие:

    Значит значение выражения −2 × (6 + 4) равно −20

    Обычно записывают короче: −2 × (6 + 4) = (−12) + (−8) = −20

    Пример 6. Найти значение выражения (−2) × (−3) × (−4)

    Выражение состоит из нескольких сомножителей. Сначала перемножим числа −2 и −3, и полученное произведение умножим на оставшееся число −4. Запись с модулями пропустим, чтобы не загромождать выражение

    Значит значение выражения (−2) × (−3) × (−4) равно −24

    Обычно записывают короче: (−2) × (−3) × (−4) = 6 × (−4) = −24

    Законы деления

    Прежде чем делить целые числа, необходимо изучить два закона деления.

    В первую очередь, вспомним из чего состоит деление. Деление состоит из трёх параметров: делимого , делителя и частного . Например, в выражении 8: 2 = 4, 8 – это делимое, 2 – делитель, 4 – частное.

    Делимое показывает, что именно мы делим. В нашем примере мы делим число 8.

    Делитель показывает на сколько частей нужно разделить делимое. В нашем примере делитель это число 2. Этот делитель показывает на сколько частей нужно разделить делимое 8. То есть, в ходе операции деления, число 8 будет разделено на две части.

    Частное – это собственно результат операции деления. В нашем примере частное это число 4. Это частное является результатом деления 8 на 2.

    На ноль делить нельзя

    Любое число запрещено делить на ноль. Дело в том, что деление является обратной операцией умножению. Например, если 2 × 6 = 12, то 12: 6 = 2

    Видно, что второе выражение записано в обратном порядке.

    Теперь сделаем тоже самое для выражения 5 × 0. Мы знаем из законов умножения, что произведение равно нулю, если хотя бы один из сомножителей равен нулю. Значит и выражение 5 × 0 равно нулю

    Если записать это выражение в обратном порядке, то получим:

    Сразу в глаза бросается ответ 5, который получается в результате деления ноль на ноль. Это невозможно и глупо.

    В обратном порядке можно записать и другое похожее выражение, например 2 × 0 = 0

    В первом случае, разделив ноль на ноль мы получили 5, а во втором случае 2. То есть, каждый раз деля ноль на ноль, мы можем получить разные значения, а это недопустимо.

    Второе объяснение заключается в том, что разделить делимое на делитель означает найти такое число, которое при умножении на делитель даст делимое.

    Например выражение 8: 2 означает найти такое число, которое при умножении на 2 даст 8

    Здесь вместо многоточия должно стоять число, которое при умножении на 2 даёт ответ 8. Чтобы найти это число, достаточно записать это выражение в обратном порядке:

    Теперь представим, что нужно найти значение выражения 5: 0. В данном случае 5 – это делимое, 0 – делитель. Разделить 5 на 0 означает найти такое число, которое при умножении на 0 даст 5

    Здесь вместо многоточия должно стоять число, которое при умножении на 0 даёт ответ 5. Но не существует числа, которое при умножении на ноль даёт 5.

    Выражение […] × 0 = 5 противоречит закону умножения на ноль, который утверждает, что произведение равно нулю, когда хотя бы один из сомножителей равен нулю.

    А значит записывать выражение […] × 0 = 5 в обратном порядке, деля 5 на 0 нет никакого смысла. Поэтому и говорят, что на ноль делить нельзя.

    С помощью переменных данный закон записывается следующим образом:

    При b ≠ 0

    Число a можно разделить на число b , при условии, что b не равно нулю.

    Свойство частного

    Этот закон говорит о том, что если делимое и делитель умножить или разделить на одно и то же число, то частное не изменится.

    Например, рассмотрим выражение 12: 4. Значение этого выражения равно 3

    Попробуем умножить делимое и делитель на одно и то же число, например на число 4. Если верить свойству частного, мы опять должны получить в ответе число 3

    (12 × 4) : (4 × 4)

    (12 × 4) : (4 × 4) = 48: 16 = 3

    Теперь попробуем не умножить, а разделить делимое и делитель на число 4

    (12: 4) : (4: 4)

    (12: 4) : (4: 4) = 3: 1 = 3

    Получили ответ 3.

    Видим, что если делимое и делитель умножить или разделить на одно и то же число, то частное не меняется.

    Деление целых чисел

    Пример 1. Найти значение выражения 12: (−2)

    Это деление чисел с разными знаками. 12 – это положительное число, (−2) – отрицательное. В таких случаях, нужно

    12: (−2) = −(|12| : |−2|) = −(12: 2) = −(6) = −6

    Обычно записывают короче 12: (−2) = −6

    Пример 2. Найти значение выражения −24: 6

    Это деление чисел с разными знаками. −24 – это отрицательное число, 6 – положительное. В таких случаях опять же нужно модуль делимого разделить на модуль делителя, и перед полученным ответом поставить знак минус.

    −24: 6 = −(|−24| : |6|) = −(24: 6) = −(4) = −4

    Обычно записывают короче −24: 6 = −4

    Пример 3. Найти значение выражения (−45) : (−5)

    Это деление отрицательных чисел. В таких случаях, нужно модуль делимого разделить на модуль делителя, и перед полученным ответом поставить знак плюс.

    (−45) : (−5) = |−45| : |−5| = 45: 5 = 9

    Обычно записывают короче (−45) : (−5) = 9

    Пример 4. Найти значение выражения (−36) : (−4) : (−3)

    Согласно порядку действий, если в выражении присутствует только умножение или деление, то все действия нужно выполнять слева направо в порядке их следования.

    Разделим (−36) на (−4), и полученное число разделим на (−3)

    Первое действие:

    (−36) : (−4) = |−36| : |−4| = 36: 4 = 9

    9: (−3) = −(|−9| : |−3|) = −(9: 3) = −(3) = −3

    Обычно записывают короче (−36) : (−4) : (−3) = 9: (−3) = −3

    Понравился урок?
    Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

    «Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

    Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

    Рассмотрим, например, вычитание. Что значит 5 – 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

    Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

    Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

    Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

    Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0: 0=0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0: 0 = 1 ? Но ведь так можно взять любое число и получить 0: 0 = 5 , 0: 0 = 317 и т. д.

    Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0 ; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

    Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль.

    Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.