Расчетная формула прямая и суммарная солнечная радиация. От чего зависит количество солнечной радиации

23.09.2019

Яркое светило припекает нас горячими лучами и заставляет задуматься о значении радиации в нашей жизни, ее пользе и вреде. Что же такое солнечная радиация? Урок школьной физики предлагает нам для начала ознакомиться с понятием электромагнитной радиации в целом. Этим термином обозначают еще одну форму материи - отличную от вещества. Сюда относится и видимый свет, и спектр, не воспринимаемый глазом. То есть рентгеновские лучи, гамма-лучи, ультрафиолетовые и инфракрасные.

Электромагнитные волны

При наличии источника-излучателя радиации ее электромагнитные волны распространяются во всех направлениях со скоростью света. Эти волны, как любые другие, имеют определенные характеристики. К ним относятся частота колебаний и длина волны. Свойством испускать радиацию обладают любые тела, чья температура отличается от абсолютного нуля.

Солнце - основной и мощнейший источник радиации вблизи нашей планеты. В свою очередь, Земля (ее атмосфера и поверхность) и сама излучает радиацию, но в другом диапазоне. Наблюдение за температурными условиями на планете в течение длительных промежутков времени породило гипотезу о равновесии количества тепла, получаемого от Солнца и отдаваемого в космическое пространство.

Радиация солнца: спектральный состав

Абсолютное большинство (около 99%) солнечной энергии в спектре лежит в интервале длин волн от 0,1 до 4 мкм. Оставшийся 1% - лучи большей и меньшей длины, включая радиоволны и рентгеновское излучение. Около половины лучистой энергии солнца приходится на тот спектр, который мы воспринимаем взглядом, примерно 44% - на инфракрасное излучение, 9% - на ультрафиолетовое. Откуда нам известно, как делится солнечная радиация? Расчет ее распределения возможен благодаря исследованиям с космических спутников.

Есть вещества, способные приходить в особое состояние и излучать дополнительную радиацию другого волнового диапазона. К примеру, встречается свечение при низких температурах, не характерных для испускания света данным веществом. Данный вид радиации, получивший название люминесцентной, не поддается обычным принципам теплового излучения.

Явление люминесценции происходит после поглощения веществом некоторого количества энергии и перехода в другое состояние (т. н. возбужденное), более энергетически высокое, чем при собственной температуре вещества. Люминесценция появляется при обратном переходе - из возбужденного в привычное состояние. В природе мы можем наблюдать ее в виде ночных свечений неба и полярного сияния.

Наше светило

Энергия солнечных лучей - почти единственный источник тепла для нашей планеты. Собственная радиация, идущая из ее глубин к поверхности, имеет интенсивность, меньшую примерно в 5 тысяч раз. При этом видимый свет - один из важнейших факторов жизни на планете - лишь часть солнечной радиации.

Энергия солнечных лучей переходит в тепло меньшей частью - в атмосфере, большей - на поверхности Земли. Там она расходуется на нагревание воды и почвы (верхних слоев), которые затем отдают тепло воздуху. Будучи нагретыми, атмосфера и земная поверхность, в свою очередь, испускают инфракрасные лучи в космос, при этом охлаждаясь.

Солнечная радиация: определение

Ту радиацию, которая идет к поверхности нашей планеты непосредственно от солнечного диска, принято именовать прямой солнечной радиацией. Солнце распространяет ее во всех направлениях. С учетом огромного расстояния от Земли до Солнца, прямая солнечная радиация в любой точке земной поверхности может быть представлена как пучок параллельных лучей, источник которых - практически в бесконечности. Площадь, расположенная перпендикулярно лучам солнечного света, получает, таким образом, ее наибольшее количество.

Плотность потока радиации (или энергетическая освещенность) служит мерой ее количества, падающего на определенную поверхность. Это объем лучистой энергии, попадающей в единицу времени на единицу площади. Измеряется данная величина - энергетическая освещенность - в Вт/м 2 . Наша Земля, как всем известно, обращается вокруг Солнца по эллипсоидной орбите. Солнце находится в одном из фокусов данного эллипса. Поэтому ежегодно в определенное время (в начале января) Земля занимает положение ближе всего к Солнцу и в другое (в начале июля) - дальше всего от него. При этом величина энергетической освещенности меняется в обратной пропорции относительно квадрата расстояния до светила.

Куда девается дошедшая до Земли солнечная радиация? Виды ее определяются множеством факторов. В зависимости от географической широты, влажности, облачности, часть ее рассеивается в атмосфере, часть поглощается, но большинство все же достигает поверхности планеты. При этом незначительное количество отражается, а основное - поглощается земной поверхностью, под действием чего та подвергается нагреванию. Рассеянная же солнечная радиация частично также попадает на земную поверхность, частично ею поглощается и частично отражается. Остаток ее уходит в космическое пространство.

Как происходит распределение

Однородна ли солнечная радиация? Виды ее после всех "потерь" в атмосфере могут различаться по своему спектральному составу. Ведь лучи с различными длинами и рассеиваются, и поглощаются по-разному. В среднем атмосферой поглощается около 23% ее первоначального количества. Примерно 26% всего потока превращается в рассеянную радиацию, 2/3 которой попадает затем на Землю. В сущности, это уже другой вид радиации, отличный от первоначального. Рассеянная радиация посылается на Землю не диском Солнца, а небесным сводом. Она имеет другой спектральный состав.

Поглощает радиацию главным образом озон - видимый спектр, и ультрафиолетовые лучи. Излучение инфракрасного диапазона поглощается углекислым газом (диоксидом углерода), которого, кстати, в атмосфере очень немного.

Рассеяние радиации, ослабляющее ее, происходит для любых длин волн спектра. В процессе его частицы, попадая под электромагнитное воздействие, перераспределяют энергию падающей волны во всех направлениях. То есть частицы служат точечными источниками энергии.

Дневной свет

Вследствие рассеяния свет, идущий от солнца, при прохождении слоев атмосфер изменяет цвет. Практическое значение рассеяния - в создании дневного света. Если бы Земля была лишена атмосферы, освещение существовало бы лишь в местах попадания прямых или отраженных поверхностью лучей солнца. То есть атмосфера - источник освещения днем. Благодаря ей светло и в местах, недоступных прямым лучам, и тогда, когда солнце скрывается за тучами. Именно рассеяние придает воздуху цвет - мы видим небо голубым.

А от чего зависит солнечная радиация еще? Не следует сбрасывать со счетов и фактор мутности. Ведь ослабление радиации происходит двумя путями - собственно атмосферой и водяным паром, а также различными примесями. Уровень запыленности возрастает летом (как и содержание в атмосфере водяного пара).

Суммарная радиация

Под ней подразумевается общее количество радиации, падающей на земную поверхность, - и прямой, и рассеянной. Суммарная солнечная радиация уменьшается при облачной погоде.

По этой причине летом суммарная радиация в среднем выше до полудня, чем после него. А в первом полугодии - больше, чем во втором.

Что происходит с суммарной радиацией на земной поверхности? Попадая туда, она в большинстве своем поглощается верхним слоем почвы или воды и превращается в тепло, часть ее при этом отражается. Степень отражения зависит от характера земной поверхности. Показатель, выражающий процентное отношение отраженной солнечной радиации к общему ее количеству, попадающему на поверхность, именуют альбедо поверхности.

Под понятием собственного излучения земной поверхности понимают длинноволновую радиацию, излучаемую растительностью, снежным покровом, верхними слоями воды и почвы. Радиационным балансом поверхности именуют разность между ее поглощенным количеством и излучаемым.

Эффективное излучение

Доказано, что встречное излучение практически всегда меньше, чем земное. Из-за этого поверхность земли несет тепловые потери. Разность величин собственного излучения поверхности и атмосферного получило название эффективного излучения. Это фактически чистая потеря энергии и как результат - тепла ночью.

Существует оно и в дневные часы. Но в течение дня частично компенсируется или даже перекрывается поглощенной радиацией. Поэтому поверхность земли теплее днем, чем ночью.

О географическом распределении радиации

Солнечная радиация на Земле в течение года распределяется неравномерно. Ее распределение несет зональный характер, причем изолинии (соединяющие точки одинаковых значений) радиационного потока вовсе не идентичны широтным кругам. Такое несоответствие вызвано различными уровнями облачности и прозрачности атмосферы в разных районах Земного шара.

Наибольшее значение суммарная солнечная радиация в течение года имеет в субтропических пустынях с малооблачной атмосферой. Гораздо меньше оно в лесных областях экваториального пояса. Причина этого - повышенная облачность. По направлению к обоим полюсам этот показатель убывает. Но в районе полюсов возрастает заново - в северном полушарии меньше, в районе снежной и малооблачной Антарктиды - больше. Над поверхностью океанов в среднем солнечная радиация меньше, чем над материками.

Почти повсюду на Земле поверхность имеет положительный радиационный баланс, то есть за одно и то же время приток радиации больше эффективного излучения. Исключение составляют области Антарктиды и Гренландии с их ледяными плато.

Грозит ли нам глобальное потепление?

Но вышесказанное не означает ежегодного потепления земной поверхности. Излишек поглощенной радиации компенсируется утечкой тепла с поверхности в атмосферу, что происходит при изменениях фазы воды (испарении, конденсации в виде облаков).

Таким образом, радиационного равновесия как такового на поверхности Земли не существует. Зато имеет место тепловое равновесие - поступление и убыль тепла уравновешивается разными путями, в том числе радиационным.

Распределение баланса по карте

В одних и тех же широтах Земного шара радиационный баланс больше на поверхности океана, чем над сушей. Объяснить это можно тем, что слой, поглощающий радиацию, в океанах имеет большую толщину, в то же время эффективное излучение там меньше из-за холода морской поверхности по сравнению с сушей.

Значительные колебания амплитуды распределения его наблюдаются в пустынях. Баланс там ниже из-за высокого эффективного излучения в условиях сухого воздуха и малой облачности. В меньшей степени он понижен в районах муссонного климата. В теплый сезон облачность там повышена, а поглощенная солнечная радиация меньше, чем в других районах той же широты.

Конечно же, главный фактор, от которого зависит среднегодовое солнечное излучение, это широта того или иного района. Рекордные "порции" ультрафиолета достаются странам, расположенным вблизи экватора. Это Северо-Восточная Африка, ее восточное побережье, Аравийский полуостров, север и запад Австралии, часть островов Индонезии, западная часть побережья Южной Америки.

В Европе самую большую дозу как света, так и радиации принимают на себя Турция, юг Испании, Сицилия, Сардиния, острова Греции, побережье Франции (южная часть), а также часть областей Италии, Кипр и Крит.

А как у нас?

Солнечная суммарная радиация в России распределена, на первый взгляд, неожиданно. На территории нашей страны, как ни странно, вовсе не черноморские курорты держат пальму первенства. Самые большие дозы солнечного излучения приходятся на территории, пограничные с Китаем, и Северную Землю. В целом солнечная радиация в России особой интенсивностью не отличается, что вполне объясняется нашим северным географическим положением. Минимальное количество солнечного света достается северо-западному региону - Санкт-Петербургу вместе с прилегающими районами.

Солнечная радиация в России уступает показателям Украины. Там больше всего ультрафиолета достается Крыму и территориям за Дунаем, на втором месте - Карпаты с южными областями Украины.

Суммарная (к ней относится и прямая, и рассеянная) солнечная радиация, попадающая на горизонтальную поверхность, приводится по месяцам в специально разработанных таблицах для разных территорий и измеряется в МДж/м 2 . Например, солнечная радиация в Москве имеет показатели от 31-58 в зимние месяцы до 568-615 летом.

О солнечной инсоляции

Инсоляция, или объем полезного излучения, падающего на освещаемую солнцем поверхность, значительно варьируется в разных географических точках. Годовая инсоляция рассчитывается на один квадратный метр в мегаваттах. Например, в Москве эта величина - 1,01, в Архангельске - 0,85, в Астрахани - 1,38 МВт.

При определении ее нужно учитывать такие факторы, как время года (зимой ниже освещенность и долгота дня), характер местности (горы могут загораживать солнце), характерные для данной местности погодные условия - туман, частые дожди и облачность. Световоспринимающая плоскость может быть ориентирована вертикально, горизонтально или под наклоном. Количество инсоляции, как и распределение солнечной радиации в России, представляет собой данные, сгруппированные в таблицу по городам и областям с указанием географической широты.

Солнечная радиация - излучение, свойственное светилу нашей планетной системы. Солнце - главная звезда, вокруг которой обращается Земля, а также соседние планеты. Фактически это огромный раскаленный газовый шар, постоянно испускающий в пространство вокруг себя потоки энергии. Именно их и называют радиацией. Смертельная, одновременно именно эта энергия - один из основных факторов, делающих возможной жизнь на нашей планете. Как и все в этом мире, польза и вред солнечной радиации для органической жизни тесно взаимосвязаны.

Общее представление

Чтобы понять, что представляет собой солнечная радиация, необходимо сперва разобраться, что же такое Солнце. Основной источник тепла, обеспечивающий условия для органического существования на нашей планете, во вселенских просторах представляет собой лишь небольшую звездочку на галактических окраинах Млечного Пути. А вот для землян Солнце - это центр мини-вселенной. Ведь именно вокруг этого газового сгустка обращается наша планета. Солнце дает нам тепло и освещение, то есть поставляет формы энергии, без которых наше существование было бы невозможно.

В древности источник солнечной радиации - Солнце - было божеством, объектом, достойным поклонения. Солнечная траектория по небу людям казалась очевидным доказательством божьей воли. Попытки вникнуть в суть явления, объяснить, что представляет собой это светило, предпринимались с давних пор, и особенно значимый вклад в них внес Коперник, сформировав идею гелиоцентризма, разительно отличавшуюся от общепринятого в ту эпоху геоцентризма. Впрочем, доподлинно известно, что и в древности ученые не раз задумывались над тем, что же такое Солнце, почему оно столь важно для любых форм жизни на нашей планете, почему передвижение этого светила именно таково, каким мы его видим.

Прогресс технологий позволил глубже понять, что представляет собой Солнце, какие процессы происходят внутри звезды, на ее поверхности. Ученые познали, что представляет собой солнечная радиация, каким образом газовый объект воздействует на планеты в своей зоне влияния, в частности, на земной климат. Сейчас человечество располагает достаточно объемной базой знаний, чтобы с уверенностью говорить: удалось выяснить, что такое по своей сути радиация, излучаемая Солнцем, как измерить этот энергетической поток и как сформулировать особенности его воздействия на разные формы органической жизни на Земле.

О терминах

Наиболее важный шаг в освоении сути понятия был сделан в прошлом столетии. Именно тогда именитый астроном А. Эддингтон сформулировал предположение: в солнечных глубинах происходит термоядерный синтез, что позволяет выделяться огромному количеству энергии, излучаемому в пространство вокруг звезды. Пытаясь оценить величину солнечной радиации, были предприняты усилия для определения фактических параметров среды на светиле. Так, температура ядра, по расчетам ученых, достигает 15 миллионов градусов. Этого достаточного, чтобы справиться со взаимным отталкивающим влиянием протонов. Столкновение единиц приводит к формированию гелиевых ядер.

Новые сведения привлекли внимание многих видных ученых, включая А. Эйнштейна. В попытках оценить величину солнечной радиации научные деятели выяснили, что гелиевые ядра по своей массе уступают суммарной величине 4 протонов, необходимых для формирования новой структуры. Так была выявлена особенность реакций, получившая название «дефект масс». Но ведь в природе ничто не может пропасть бесследно! В попытке отыскать «сбежавшие» величины ученые сравнили энергетическое излечение и специфику изменения массы. Именно тогда удалось выявить, что разность излучается гамма-квантами.

Излучаемые объекты пробиваются от ядра нашей звезды к ее поверхности сквозь многочисленные газовые атмосферные слои, что приводит к дроблению элементов и формированию на их основе электромагнитного излучения. Среди прочих видов солнечной радиации - свет, воспринимаемый человеческим глазом. Приблизительные оценки позволили предположить, что процесс прохождения гамма-квантов занимает около 10 миллионов лет. Еще восемь минут - и излученная энергия достигает поверхности нашей планеты.

Как и что?

Солнечной радиацией называют суммарный комплекс электромагнитного излучения, которому свойственен довольно обширный диапазон. Сюда входит так называемый солнечный ветер, то есть энергетический поток, сформированный электронами, легкими частицами. На пограничном слое атмосферы нашей планеты постоянно наблюдается одинаковая интенсивности излучения Солнца. Энергия звезды дискретна, ее перенос осуществляется через кванты, при этом корпускулярный нюанс настолько малозначим, что можно рассматривать лучи в качестве электромагнитных волн. А их распространение, как выяснили физики, происходит равномерно и по прямой линии. Таким образом, чтобы описать солнечную радиацию, необходимо определить свойственную ей длину волны. На основании этого параметра принято выделять несколько типов излучения:

  • тепло;
  • радиоволна;
  • белый свет;
  • ультрафиолет;
  • гамма;
  • рентген.

Соотношение инфракрасных, видимых, ультрафиолетовых лучшей оценивается следующим образом: 52%, 43%, 5%.

Для количественной радиационной оценки необходимо рассчитать плотность потока энергии, то есть количество энергии, которое в заданный временной промежуток достигает ограниченного участка поверхности.

Как показали исследования, солнечная радиация преимущественно поглощается планетарной атмосферой. Благодаря этому происходит нагрев до температуры, комфортной для органической жизни, свойственной Земле. Имеющаяся оболочка из озона позволяет пройти лишь одной сотой ультрафиолетового излучения. При этом полностью блокируются волны короткой длины, опасные для живых существ. Атмосферные слои способны рассеять почти треть лучей Солнца, еще 20% поглощаются. Следовательно, поверхности планеты достигает не более половины всей энергии. Именно этот «остаток» в науке назвали прямой солнечной радиацией.

А если поподробнее?

Известно несколько аспектов, от которых зависит, насколько интенсивным будет прямое излучение. Наиболее значимыми считаются угол падения, зависящий от широты (географическая характеристика местности на земном шаре), время года, определяющее, как велико расстояние до конкретной точки от источника излучения. Многое зависит от особенностей атмосферы - насколько она загрязнена, как много в заданный момент облаков. Наконец, играет роль характер поверхности, на которую падает луч, а именно, ее способности отражать поступившие волны.

Суммарной солнечной радиацией называют величину, объединяющую рассеянные объемы и прямое излучение. Параметр, используемый для оценки интенсивности, оценивается в калориях в расчете на единицу территории. При этом помнят, что в разное время суток значения, свойственные излучению, отличаются. Кроме того, энергия не может распределяться по поверхности планеты равномерно. Чем ближе к полюсу, тем интенсивность выше, при этом снежные покровы обладают высокой отражающей способностью, а значит, воздух не получает возможности прогреться. Следовательно, чем дальше от экватора, тем суммарные показатели солнечного волнового излучения будут меньше.

Как удалось выявить ученым, энергия солнечной радиации оказывает серьезное воздействие на планетарный климат, подчиняет себе жизнедеятельность разнообразных организмов, существующих на Земле. В нашей стране, а также на территории ближайших соседей, как и в прочих странах, расположенных в северном полушарии, зимой преимущественная доля принадлежит рассеянному излучению, а вот летом доминирует прямое.

Инфракрасные волны

Из общего количества суммарной солнечной радиации внушительный процент принадлежит именно инфракрасному спектру, не воспринимаемому глазом человека. За счет таких волн нагревается поверхность планеты, постепенно передающая тепловую энергию воздушным массам. Это помогает сохранять комфортный климат, поддерживать условия для существования органической жизни. Если не происходит каких-то серьезных сбоев, климат остается условно неизменным, а значит, все существа могут обитать в привычных им условиях.

Наше светило - не единственный источник волн инфракрасного спектра. Аналогичное излучение свойственно любому нагретому объекту, включая обычную батарею в человеческом доме. Именно на принципе восприятия инфракрасного излучения работают многочисленные приборы, дающие возможность видеть в темноте, иных некомфортных для глаз условиях нагретые тела. Кстати говоря, по аналогичному принципу работают ставшие столь популярными в последнее время компактные приборы для оценки, через какие участки здания происходят наибольшие теплопотери. Эти механизмы особенно широко распространены в среде строителей, а также владельцев частных домов, поскольку помогают выявить, через какие участки тепло теряется, организовать их защиту и предупредить лишний расход энергии.

Не стоит недооценивать влияние солнечной радиации инфракрасного спектра на человеческий организм только по причине того, что наши глаза не могут воспринимать такие волны. В частности, излучение активно используется в медицине, поскольку позволяет повысить концентрацию лейкоцитов в кровеносной системе, а также привести в норму кровоток за счет увеличения просветов кровеносных сосудов. Приборы, основанные на ИК-спектре, применяются в качестве профилактических против кожных патологий, терапевтических при воспалительных процессах в острой и хронической форме. Наиболее современные препараты помогают справиться с коллоидными рубцами и трофическими ранами.

Это любопытно

На основе изучения факторов солнечной радиации удалось создать поистине уникальные приборы, называемые термографами. Они дают возможность своевременно обнаружить различные болезни, не доступные для выявления иными способами. Именно так можно найти рак или тромб. ИК в некоторой степени защищает от ультрафиолета, опасного для органической жизни, что позволило использовать волны такого спектра для восстановления здоровья продолжительное время находившихся в космосе астронавтов.

Природа вокруг нас и по сей день загадочна, касается это и излучения различных длин волн. В частности, инфракрасный свет все еще исследован не досконально. Ученые знают, что его неправильное применение может стать причиной вреда здоровью. Так, недопустимо использовать оборудование, формирующее такой свет, для терапии гнойных воспаленных участков, кровотечений и злокачественных новообразований. Инфракрасный спектр противопоказан людям, страдающим нарушениями функционирования сердца, сосудов, включая расположенные в мозге.

Видимый свет

Один из элементов суммарной солнечной радиации - видимый человеческому глазу свет. Волновые пучки распространяются по прямым линиям, поэтому не происходит наложения друг на друга. В свое время это стало темой немалого количества научных работ: ученые задались целью понять, по какой причине вокруг нас так много оттенков. Оказалось, что свою роль играют ключевые параметры света:

  • преломление;
  • отражение;
  • поглощение.

Как выяснили ученые, объекты не способны сами по себе быть источниками видимого света, но могут поглощать излучение и отражать его. Варьируются углы отражения, частота волн. На протяжении многих веков способность человека видеть постепенно совершенствовалась, но определенные ограничения обусловлены биологическим строением глаза: сетчатка такова, что может воспринять лишь определенные лучи отраженных световых волн. Это излучение - небольшой промежуток между ультрафиолетом и инфракрасными волнами.

Многочисленные любопытные и загадочные световые особенности не только стали темой множества работ, но и были основанием для зарождения новой физической дисциплины. Одновременно появились ненаучные практики, теории, приверженцы которых считают, что цвет способен повлиять на физическое состояние человека, психику. На основании таких предположений люди окружают себя предметами, наиболее приятными для их глаза, делая бытовую повседневность комфортнее.

Ультрафиолет

Не менее важный аспект суммарной солнечной радиации - ультрафиолетовое изучение, сформированное волнами большой, средней и малой длины. Они отличны друг от друга как по физическим параметрам, так и по особенностям влияния на формы органической жизни. Длинные ультрафиолетовые волны, к примеру, в атмосферных слоях в основном рассеиваются, а до земной поверхности добирается лишь незначительный процент. Чем короче длина волны, тем глубже такое излучение может проникнуть в человеческую (и не только) кожу.

С одной стороны, ультрафиолет опасен, но без него невозможно существование многообразной органической жизни. Такое излучение отвечает за формирование кальциферола в организме, а этот элемент необходим для строительства костной ткани. УФ-спектр - это мощная профилактика рахита, остеохондроза, что особенно важно в детском возрасте. Кроме того, такое излучение:

  • приводит в норму метаболизм;
  • активизирует производство незаменимых ферментов;
  • усиливает регенеративные процессы;
  • стимулирует кровоток;
  • расширяет кровеносные сосуды;
  • стимулирует иммунную систему;
  • приводит к формированию эндорфина, а значит, уменьшается нервное перевозбуждение.

Обратная сторона медали

Выше было указано, что суммарной солнечной радиацией называют количество излучения, достигшего поверхности планеты и рассеянного в атмосфере. Соответственно, элементом этого объема является ультрафиолет всех длин. Нужно помнить, что этот фактор имеет как положительные, так и отрицательные стороны влияния на органическую жизнь. Солнечные ванны, зачастую полезные, могут быть источником опасности для здоровья. Слишком продолжительное нахождение под прямым солнечным светом, особенно в условиях повышенной активности светила, вредно и опасно. Продолжительное влияние на организм, а также слишком высокая активность облучения становятся причиной:

  • ожогов, покраснений;
  • отеков;
  • гиперемии;
  • жара;
  • тошноты;
  • рвоты.

Продолжительное ультрафиолетовое облучение провоцирует нарушение аппетита, функционирования ЦНС, иммунной системы. Кроме того, начинает болеть голова. Описанные признаки - классические проявления солнечного удара. Сам человек не всегда может осознать, что происходит - состояние ухудшается постепенно. Если заметно, что кому-то поблизости стало плохо, следует оказать первую помощь. Схема следующая:

  • помочь перейти из-под прямого света в прохладное затененное место;
  • положить больного на спину так, чтобы ноги были выше головы (это поможет привести в норму кровоток);
  • охладить водой шею, лицо, а на лоб положить холодный компресс;
  • расстегнуть галстук, ремень, снять тесную одежду;
  • через полчаса после приступа дать выпить прохладной воды (небольшое количество).

Если пострадавший потерял сознание, важно сразу обратиться за помощью к доктору. Бригада скорой помощи переместит человека в безопасное место и сделает инъекцию глюкозы или витамина С. Лекарство вводят в вену.

Как загорать правильно?

Чтобы не узнать на своем опыте, каким неприятным может быть излишнее количество солнечной радиации, получаемое при загаре, важно соблюдать правила безопасного времяпрепровождения на солнце. Ультрафиолет инициирует выработку меланина - гормона, помогающего кожным покровам защититься от негативного влияния волн. Под воздействием этого вещества кожа становится темнее, а оттенок переходит в бронзовый. И по сей день не стихают споры о том, насколько это полезно и вредно для человека.

С одной стороны, загар - попытка организма защититься от излишнего воздействия излучения. При этом повышается вероятность формирования злокачественных новообразований. С другой стороны, загар считается модным и красивым. Чтобы минимизировать для себя риски, разумно перед началом пляжных процедур разобрать, чем опасно количество солнечной радиации, получаемое во время солнечных ванн, как минимизировать риски для себя. Чтобы впечатления были максимально приятными, любители загорать должны:

  • пить много воды;
  • пользоваться защищающими кожу средствами;
  • загорать вечером или утром;
  • проводить под прямыми лучами солнышка не больше часа;
  • не употреблять спиртное;
  • включить в меню богатые селеном, токоферолом, тирозином продукты. Не стоит забывать и о бета-каротине.

Значение солнечной радиации для человеческого организма исключительно велико, не стоит упускать из внимания и положительные, и отрицательные аспекты. Следует осознавать, что у разных людей биохимические реакции происходят с индивидуальными особенностями, поэтому для кого-то и получасовые солнечные ванны могут быть опасны. Разумно перед пляжным сезоном проконсультироваться с доктором, оценить тип, состояние кожных покровов. Это поможет предупредить вред здоровью.

По возможности следует избегать загара в преклонном возрасте, в период вынашивания малыша. Не сочетаются с солнечными ваннами раковые заболевания, нарушения психики, кожные патологии и недостаточность функционирования сердца.

Суммарная радиация: где недостача?

Довольно интересным для рассмотрения является процесс распределения солнечной радиации. Как выше было упомянуто, лишь около половины всех волн могут достигнуть поверхности планеты. Куда же пропадают остальные? Свою роль играют разные слои атмосферы и микроскопические частицы, из которых они сформированы. Внушительная часть, как было указано, поглощается озоновым слоем - это все волны, длина которых менее 0,36 мкм. Дополнительно озон способен поглотить некоторые типы волн из видимого человеческому глазу спектра, то есть промежутка 0,44-1,18 мкм.

Ультрафиолет в некоторой степени поглощается кислородным слоем. Это свойственно излучению с длиной волны 0,13-0,24 мкм. Углекислый газ, пар воды могут поглотить небольшой процент инфракрасного спектра. Аэрозоль атмосферы поглощает некоторую часть (ИК-спектр) от общего количества солнечной радиации.

Волны из категории коротких рассеиваются в атмосфере из-за наличия здесь микроскопических неоднородных частиц, аэрозоля, облаков. Неоднородные элементы, частицы, чьи габариты уступают длине волны, провоцируют молекулярное рассеивание, а для более крупных свойственно явление, описываемое индикатрисой, то есть аэрозольное.

Прочее количество солнечной радиации достигает земной поверхности. Оно сочетает прямое излучение, рассеянное.

Суммарная радиация: важные аспекты

Суммарная величина - это количество солнечной радиации, получаемое территорией, а также поглощенное в атмосфере. Если на небе нет облаков, суммарная величина излучения зависит от широты местности, высоты положения небесного тела, типа поверхности земли на этом участке, а также уровня прозрачности воздуха. Чем больше в атмосфере рассеяно аэрозольных частиц, тем ниже прямое излучение, зато возрастает доля рассеянного. В норме при отсутствии облачности в суммарной радиации рассеянная - это одна четвертая часть.

Наша страна принадлежит к числу северных, поэтому большую часть года в южных регионах излучение существенно больше, чем в северных. Это обусловлено положением светила на небе. А вот короткий временной промежуток май-июль - это уникальный период, когда даже на севере суммарная радиация довольно внушительная, поскольку солнце находится высоко в небе, а продолжительность светового дня больше, чем в прочие месяцы года. При этом в среднем на азиатской половине страны при отсутствии облачности суммарная радиация существеннее, нежели на западе. Максимальная сила волнового излучения наблюдается в полдень, а годовой максимум приходится на июнь, когда солнце выше всего в небе.

Суммарной солнечной радиацией называют количество солнечной энергии, достигающей нашей планеты. При этом нужно помнить, что разные атмосферные факторы приводят к тому, что годовой приход суммарной радиации меньше, нежели мог бы быть. Самая большая разница между реально наблюдаемым и максимально возможным характерна для дальневосточных регионов в летний период. Муссоны провоцируют исключительно плотную облачность, поэтому суммарная радиация уменьшается приблизительно вполовину.

Любопытно знать

Наибольший процент от максимально возможного облучения солнечной энергией в реальности наблюдается (в расчете на 12 месяцев) на юге страны. Показатель достигает 80%.

Облачность не всегда приводит к одинаковому показателю рассеивания солнечного излучения. Играет роль форма облаков, особенности солнечного диска в конкретный момент времени. Если таковой открыт, тогда облачность становится причиной уменьшения прямого излучения, одновременно рассеянное резко возрастает.

Возможны и такие дни, когда прямое излучение по своей силе приблизительно такое же, как рассеянное. Суточная суммарная величина может быть даже больше, нежели излучение, свойственное совсем безоблачному дню.

В расчете на 12 месяцев особенное внимание необходимо уделять астрономическим явлениям как определяющим общие численные показатели. При этом облачность приводит к тому, что реально радиационный максимум может наблюдаться не в июне, а месяцем раньше или позже.

Радиация в космосе

С границы магнитосферы нашей планеты и дальше в космические пространства солнечная радиация становится фактором, сопряженным со смертельной опасностью для человека. Еще в 1964 был выпущен важный научно-популярный труд, посвященный методам защиты. Его авторами выступили советские ученые Каманин, Бубнов. Известно, что для человека доза облучения в расчете на неделю должна быть не более 0,3 рентгена, при этом за год - в пределах 15 Р. При кратковременном облучении пределом для человека обозначено 600 Р. Полеты в космос, особенно в условиях непредсказуемой солнечной активности, могут сопровождаться значительным облучением астронавтов, что обязывает принимать дополнительные меры защиты от волн разной длины.

После миссий "Аполлон", в ходе которых тестировались способы защиты, исследовались факторы, влияющие на человеческое здоровье, прошло не одно десятилетие, но и по сей день ученые не могут найти результативные, надежные методы прогнозирования геомагнитных бурь. Можно составить прогноз в расчете на часы, иногда - на несколько дней, но даже для недельного предположения шансы реализации - не более 5%. Солнечный ветер - еще более непредсказуемое явление. С вероятностью один к трем космонавты, отправляясь в новую миссию, могут попасть в мощные потоки излучений. Это делает еще более важным вопрос как исследования и прогнозирования радиационных особенностей, так и разработки методов защиты от него.

Зональное распределение солнечной радиации у земной поверхности.

До земной поверхности солнечная радиация доходит ослабленной атмосферным поглощением и рассеянием. Кроме того, в атмосфере всегда есть облака, и прямая солнечная радиация часто не достигает земной поверхности, поглощаясь, рассеиваясь и отражаясь обратно облаками. Облачность может уменьшать приток прямой радиации в широких пределах. Например, в зоне пустыни теряется вследствие наличия облаков всего 20% прямой солнечной радиации. Но в муссонном климате потеря прямой радиации вследствие облачности составляет 75%. В Петербурге, даже в среднем за год, облака не пропускают к земной поверхности 65% прямой радиации.

Распределение прямой солнечной радиации по Земному шару носит сложный характер, так как степень прозрачности атмосферы и условия облачности весьма изменчивы в зависимости от географической обстановки. Наибольший приток прямой радиации летом не в полярных широтах, как на границе атмосферы, а под 30-40° широты. В полярных широтах слишком велико ослабление радиации вследствие небольших высот солнца. Весной и осенью максимум прямой радиации не у экватора, как на границе атмосферы, а на 10-20° весной и на 20-30° осенью: у экватора слишком велика облачность. Только зимой данного полушария приэкваториальная зона получает радиации на земную поверхность, так же как и на верхнюю границу атмосферы, больше, чем все другие зоны.

Величины рассеянной радиации в общем меньше, чем прямой, но порядок величин тот же. В тропических и средних широтах величина рассеянной радиации - от половины до двух третей прямой радиации; под 50-60° широты она уже близка к прямой, а в высоких широтах (60-90°) рассеянная радиация почти весь год больше прямой. Летом приток рассеянной радиации в высоких широтах больше, чем в других зонах северного полушария.

Географическое распределение суммарной радиации

Рассмотрим распределение годовых и месячных количеств (сумм) суммарной радиации по Земному шару. Мы видим, что оно не вполне зонально: изолинии радиации на картах не совпадают с широтными кругами. Отклонения эти объясняются тем, что на распределение радиации по Земному шару оказывают влияние прозрачность атмосферы и облачность. Годовые количества суммарной радиации составляют в тропических и субтропических широтах свыше 140 ккал/см2. Они особенно велики в малооблачных субтропических пустынях, а в северной Африке достигают 200-220 ккал/см2. Зато над приэкваториальными лесными областями с их большой облачностью (над бассейнами Амазонки и Конго, над Индонезией) они снижены до 100-120 ккал/см2. К более высоким широтам обоих полушарий годовые количества суммарной радиации убывают, достигая под 60° широты 60-80 ккал/см2. Но затем они снова растут - мало в северном полушарии, но весьма значительно над малооблачной и снежной Антарктидой, где в глубине материка они достигают 120-130 ккал/см2, т. е. величин, близких к тропическим и превышающих экваториальные. Над океанами суммы радиации ниже, чем над сушей.

В декабре наибольшие суммы радиации, до 20-22 ккал/см2 и даже выше, в пустынях южного полушария. Но в облачных районах у экватора они снижены до 8-12 ккал/см2. В зимнем северном полушарии радиация быстро убывает на север; к северу от 50-й параллели она менее 2 ккал/см2 и несколько севернее полярного круга равна нулю. В летнем южном полушарии она убывает к югу до 10 ккал/см2 и ниже в широтах 50-60°. Но затем она растет - до 20 ккал/см2 у берегов Антарктиды и свыше 30 ккал/см2 внутри Антарктиды, где она, таким образом, больше, чем летом в тропиках.

В июне наивысшие суммы радиации, свыше 22 ккал/см2, над северо-восточной Африкой, Аравией, Иранским нагорьем. До 20 ккал/см2 и выше они в Средней Азии; значительно меньше, до 14 ккал/см2, в тропических частях материков южного полушария. В облачных приэкваториальных областях они, как и в декабре, снижены до 8-12 ккал/см2. В летнем северном полушарии суммы радиации убывают от субтропиков к северу медленно, а севернее 50° с. ш. возрастают, достигая 20 ккал/см2 и более в Арктическом бассейне. В зимнем южном полушарии они быстро убывают к югу, до нуля за южным полярным кругом.
(http://gisssu.narod.ru/world/wcl_txt.ht

ЗАДАЧА-ВИЭ

Как определяется полное количество энергии, излучаемое 1 м 2 поверхности в 1 сек.ОТВЕТКак определяется полное количество энергии, излучаемое 1 м 2 поверхности в 1 сек Е (Т) = аТ 4

где а = 5,67·10 -8 Вт/(м 2 К 4), Т - абсолютная температура абсолютно черного тела по шкале Кельвина.Эта закономерность называется законом излучения Стефана-Болъцмана.Она была установлена еще в прошлом веке на основе многочисленных экспериментальных наблюдений и Стефаном, теоретически обоснована Л. Больцманом, исходя из классических законов термодинамики и электродинамики равновесного излучения, а впоследствии, в начале нашего столетия было выяснено, что эта закономерность вытекает из квантового закона распределения энергии в спектре равновесного излучения, выведенного М. Планком.

Расчетная методика для определения длина волны λ m , на которую приходится максимум энергии излучения абсолютно черного телаСогласно закону смещения Вина, длина волны λ m , на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре T :

Закон распределения спектральной мощности излучения абсолютно черным телом был ус­тановлен Планком, называется он поэтому законом излучения Планка. Этот закон устанавливает,что мощность излучения в единичном интервале длин волн определяется температурой Т абсолютно черного тела: Причем, Вывод этой формулы помимо предположения о термодинамической равновесности излучения основывается на квантовой его природе, т. е. энергия излучения суммируется из энергии отдельных квантов с энергией Е ч =hv. Заметим, что представляет полную энергию, излучаемую единицей поверхности абсолютно черного тела в телесный угол 2π за 1 сек, во всем интервале частот, и она совпадает с закономерностью Стефана-Больцмана

Расчетная методика для определения оптическую массу пройденное прямыми солнечными лучами через атмосферуРасстояние , пройденное прямыми солнечными лучами через атмосферу, зависит от угла падения (зенитного угла) и высоты расположения наблюдателя над уровнем моря.Мы предполагаем наличие ясного неба без облаков, пыли или загрязнений воздуха. Так как верхняя граница атмосферы точно не определена, более важным фактором, чем пройденное расстояние, является взаимодействие излучения с атмосферными газами и парами.Прямой поток, нормально проходящий сквозь атмосферу при нормальном давлении, взаимодействует с определенной массой воздуха. Увеличение длины пути при наклонном падении луча.

Прямой поток, нормально проходящий сквозь атмосферу при нормальном давлении, взаимодействует с определенной массой воздуха. Увеличение длины пути при наклонном падении луча.

Оптическая масса m = secθ z :1-длина пробега, увеличеннаяна коэффициент т ; 2-нормальное падениеПод углом θ z , по сравнению с путем при нормальном падении, называется оптической массой и обозначается символом т. Из рисунка без учета кривизны земной поверхности получаем m=secθ z .

Расчетная методика для определенияинтенсивность космического солнечного излучения (солнечная постоянная) S o , полученная от СолнцаЕсли радиус Земли R, а интенсивность космического солнечного излучения (солнечная постоянная) S o , то полученная от Солнца энергия составляет πR 2 (1 - ρ 0)So. Эта энергия равна энергии, излучаемой в космическое пространство Землей с излучательной способностью ε = 1 и средней температурой Т е , Следовательно .

Спектральное распределение длинноволнового излучения поверхности Земли, наблюдаемого из космоса, примерно соответствует спектральному распределению абсолютно черного тела при температуре 250 К.Излучение атмосферы распространяется как к поверхности Земли, так и в противоположном направлении. Эффективная температура черного тела Земли как излучателя эквивалентна температуре, с которой излучают внешние слои атмосферы, а не поверхность Земли.

Расчетная методика для определенияпоток и плотности лучистой энергии солнцаВ метеорологии потоки лучистой энергии подразделяются на коротковолновую радиацию с длинами волн от 0,2 до 5,0 мкм и длинноволновую радиацию с длинами волн от 5,0 до 100 мкм. Потоки коротковолновой солнечной радиации подразделяются на:- прямые;

- рассеянные(диффузнные);- суммарные.Солнечной энергией W- называют энергию, переносимую электромагнитными волнами.Единицей энергии излучения W в международной системе единиц СИ является 1 джоуль.Лучистый поток Ф э - который определяется формулой: Ф э =W/t,

где W - энергия излучения за время t.

Полагая W=1 Дж, t=1 с, получим: 1 СИ (Ф э)=1 Дж/1 сек=1 Вт.Плотность лучистого потока излучения (поток радиации I) который определяется формулой:где Ф э - поток излучения, равномерно падающий на поверхность S.

Полагая Ф э =1 Вт, S=1 м 2 , находим: 1 СИ (Е э)=1 Вт/ 1 м 2 =1 Вт/м 2 .

Расчетная формула прямая и суммарная солнечная радиация

Прямая солнечная радиация-I п представляет собой поток излучения, поступающего от солнечного диска и измеряемого в плоскости, перпендикулярной солнечным лучам. Прямая радиация, приходящая на горизонтальную поверхность (S "), вычисляется по формуле:

S " = I п sin h, где h - высота солнца над горизонтом. Для измерения прямой солнечной радиации используется актинометр Савинова-Янишевского.Рассеянной солнечной радиацией (D)- называется радиация, поступающая на горизонтальную поверхность от всех точек небесного свода, за исключением диска Солнца и околосолнечной зоны радиусом 5 0 , в результате рассеяния солнечной радиации молекулами атмосферных газов, водяными каплями или ледяными кристаллами облаков и твердыми частицами, взвешенными в атмосфере. Суммарная солнечная радиация Q- включает излучение, падающее на горизонтальную плоскость, двух видов: прямое и диффузное. Q = S " + D (4.7)Дошедшая до земной поверхности суммарная радиация в большей своей части поглощается в верхнем, тонком слое почвы или воды и переходит в тепло, а частично отражается.

Определите основных точек небесной сферыНебесная сфера – это воображаемая сфера произвольного радиуса. Центр ее в зависимости от решаемой задачи совмещают с той или иной точкой пространства. Отвесная линия пересекает поверхность небесной сферы в двух точках: в верхней Z – зените – и в нижней Z" – надир Основные точки и круги на небесной сфере

Определите Небесные координаты солнцаОсновными кругами, относительно которых определяется место Солнца (светила), являются истинный горизонт и небесный меридиан- координатами являются высота Солнца (h) и его азимут (A) .Кажущееся положение Солнца в любой точке Земли определяется двумя этими углами Горизонтальная система координатВысота h Солнца над горизонтом уголмежду направлением на Солнце из точки наблюдения и горизонтальной плоскостью, проходя­щей через эту точку.Азимут А Солнца - угол между плоскостью меридиана и вертикальной плоскостью, проведенной через точку наблюдения и Солнце.Зенитный уголZ - угол между направлением в зенит (Z) и направлением на Солнце. Этот угол является дополнительным к высоте солнцестояния h + z = 90. Когда Земля обращена к Солнцу южной стороной, азимут равен нулю, а высота максимальна. Отсюда вытекает понятие полдень, которое принято за начало времени отсчета дня (или второй половины суток).

Расчетная методика для определения угловое солнечное время (часовой угол Солнца)Угловое солнечное время(часовой угол Солнца) τ - представляет собой угловое смещение Солнца от полудня (1 ч соответствует π/12 рад , или 15 ° углового смещения). Смещение на Восток от Юга (т. е. утреннее значение) считается положительным.Часовой угол Солнца τ меняется между плоскостями местного меридиана и Солнечного меридиана. Один раз каждые 24 ч Солнце попадает в меридиональную плоскость.Вследствие суточного вращения Земли часовой угол τ изменяется в течение суток от 0 до 360 o или 2π рад (радиан), за 24 часа, таким образом, Земля, двигаясь по Орбите, вращается вокруг своей оси с угловой скоростью Если принять солнечное время от истинного полудня, соответствующего моменту прохождения Солнца через плоскости местного меридиана, то можно записать: ,град или рад

Расчетная методика для определениясклонение СолнцаСклонение Солнца - угол между направлением к Солнцу и экваториальной плоскостью называется склонением δ и является мерой сезонных изменений. Склонение обычно выражают в радианах (или градусах) к Северу или Югу от экватора. Измеряется от 0° до 90° (положительное значение к северу от экватора, отрицательное - к югу).Земля обращается вокруг Солнца за год. Направление земной оси остается фиксированным в пространстве под углом δ 0 = 23,5° к нормали к плоскости вращения,В северном полушарии δ плавно меняется от δ 0 = + 23,5° в период летнего солнцестояния до δ 0 =-23,5° в период зимнего солнцестояния.Аналитически получен град

где п - день года (n = 1 соответствует 1 января).В точках равноденствия δ = 0 , а точки восхода и захода Солнца располагаются строго на линии В-З горизонта.Таким образом, траектория Солнца по небесной сфере не является замкнутой кривой, а представляет собой своеобразную сферическую спираль, набивающуюся на боковую поверхность сферы в пределах полосы - .

В течение летнего полугодия с 21 марта по 23 сентября и Солнце находится выше плоскости экватора в северной небесной полусфере. В течение зимнего полугодия с 23 сентября по 21 марта и Солнце находится ниже плоскости экватора в южной небесной полусфере.

Солнечная радиация — поступающая на Землю энергия солнечного излучения в виде потока электромагнитных волн.

Солнце распространяет вокруг себя мощное электромагнитное излучение. Всего одна двухмиллиардная его доля попадает в верхние слои атмосферы Земли, но и она составляет огромное число калорий в минуту.

Далеко не весь энергетический поток достигает поверхности Земли - большая его часть отбрасывается планетой в мировое пространство. Земля отражает атаку тех лучей, которые губительны для живого вещества планеты. На дальнейшем пути к Земле солнечные лучи встречают препятствия в виде наполняющих атмосферуводяного пара, молекул углекислого газа и частичек пыли, взвешенных в воздухе. Атмосферный «фильтр» поглощает значительную часть лучей, рассеивает их, отражает. Особенно велика отражательная способность облаков. В результате непосредственно земная поверхность получает лишь 2/3 той радиации, которая пропускается озоновым экраном. Но и из этой части многое отражается в соответствии с отражательной способностью различных поверхностей.

На всю поверхность Земли поступает чуть более 100000 калорий на 1 см2 в минуту. Эта радиация поглощается растительностью, почвой, поверхностью морей и океанов. Она превращается в тепло, которое расходуется на прогревание слоев атмосферы, движение воздушных и водных масс, на создание всего великого разнообразия форм жизни на Земле.

Солнечная радиация поступает на земную поверхность различными путями:

  1. прямая радиация: поступление радиации непосредственно от Солнца, если оно не закрыто облаками;
  2. рассеянная радиация: поступление радиации от небесного свода или облаков, рассеивающих солнечные лучи;
  3. тепловая: поступление радиации происходит от атмосферы, нагревшейся в результате воздействия радиации.

Прямая и рассеянная радиация поступает только днем. Вместе они составляют суммарную радиацию. Та солнечная радиация, которая остается после потери на отражение от поверхности, называется поглощенной.

Солнечную радиацию измеряют с помощью прибора, который называется актинометром.

Солнце заливает Землю целым океаном энергии, который практически неисчерпаем, поэтому в последние годы все большее внимание уделяется проблеме использования солнечной энергии в хозяйстве. В разных странах уже работают солнечные опреснители, водонагреватели, сушители. Полностью на энергии солнечной радиации работают запускаемые с Земли искусственные спутники, космические корабли, лаборатории.

Солнечная радиация википедия
Поиск по сайту:

На изменения притока тепла в короткие периоды времени и на неравномерное распределение его в ландшафтной оболочке влияет ряд обстоятельств, из которых мы рассмотрим наиболее важные.

Небольшие периодические изменения радиации зависят прежде всего от того, что Земля обращается вокруг Солнца по эллиптической орбите и, следовательно, расстояние её от Солнца меняется. В перигелии, т. е. в наиболее близкой к Солнцу точке орбиты (Земля бывает в ней в настоящую эпоху 1 января), расстояние равно 147 млн. км; в афелии, т. е. наиболее удалённой от Солнца точке орбиты (3 июля), это расстояние уже 152 млн. км; разница составляет 5 млн. км. В соответствии с этим в начале января радиация увеличивается на 3,4% по сравнению со средней (т. е. вычисленной для среднего расстояния от Земли до Солнца), а в начале июля на 3,5% уменьшается.

Весьма важным фактором, определяющим количество радиации, получаемое тем или иным участком земной поверхности, является угол падения солнечных лучей. Если J - интенсивность радиации при вертикальном падении лучей, то при встрече их с поверхностью под углом α интенсивность радиации будет J sin α: чем острее угол, тем на большую площадь должна распределиться энергия пучка лучей и, стало быть, тем меньше её придётся на единицу площади.

Угол, образуемый солнечными лучами с земной поверхностью, зависит от рельефа местности, географической широты и высоты Солнца над горизонтом, изменяющейся как в течение суток, так и в течение года.

На неровной местности (всё равно, идёт ли речь о горах или мелких неровностях) различные элементы рельефа освещаются Солнцем неодинаково. На солнечном склоне холма угол падения лучей больше, чем на равнине у подножия холма, но на противоположном склоне этот угол очень мал. Под Ленинградом склон холма, обращённый к югу и наклоненный под углом в 10°, находится в тех же тепловых условиях, что и горизонтальная площадка под Харьковом.

Зимой обращённые к югу крутые склоны обогреваются лучше, чем пологие (так как Солнце стоит в общем низко над горизонтом). Летом пологие склоны южной экспозиции получают тепла больше, а крутые меньше, чем горизонтальная поверхность. Склоны северной экспозиции в нашем полушарии во все сезоны получают наименьшее количество радиации.

Зависимость угла падения солнечных лучей от географической широты довольно сложная, так как при существующем угле наклона эклиптики высота Солнца в данном месте (значит, и угол падения солнечных лучей на плоскость горизонта) меняется не только за сутки, но и в году.

Наибольшая полуденная высота, какой на широте φ. Солнце достигает в дни равноденствий, составляет 90° - φ, в день летнего солнцестояния 90°- φ +23°,5 и в день зимнего солнцестояния 90° - φ - 23°,5.

Следовательно, наибольший угол падения солнечных лучей в полдень на экваторе в году изменяется от 90° до 66°,5, а на полюсе от -23°,5 до + 23°,5, т. е. практически от 0° до + 23°,5 (так как отрицательный угол характеризует величину погружения Солнца под горизонт).

Большую роль в преобразовании солнечной радиации играет газовая оболочка Земли. Частички воздуха, водяного пара и пылинки рассеивают солнечный свет; благодаря этому днём светло и при отсутствии прямых солнечных лучей. Атмосфера, кроме того, поглощает некоторое количество лучистой энергии, т. е. переводит её в тепловую. Наконец, солнечная радиация, поступающая в атмосферу, частично отражается обратно в мировое пространство. Особенно сильными отражателями служат облака.

В результате не вся радиация, поступившая на границу атмосферы, достигает поверхности Земли, а лишь часть её и притом качественно (по спектральному составу) изменённая, так как волны короче 0,3 μ, энергично поглощаемые кислородом и озоном, до земной поверхности не доходят, а видимые волны неодинаково рассеиваются.

Очевидно, что при отсутствии атмосферы тепловой режим Земли отличался бы от того, какой на самом деле наблюдается. Для целого ряда расчётов и сопоставлений нередко бывает удобно устранить влияние атмосферы на радиацию, иметь понятие о радиации в чистом виде. С этой целью вычисляют так называемую солнечную постоянную, т. е. количество тепла, приходящееся в 1 мин. на 1 кв. см перпендикулярной к солнечным лучам чёрной (поглощающей всю радиацию) поверхности, которое Земля получала бы при своём среднем расстоянии от Солнца и при отсутствии атмосферы. Солнечная постоянная равна 1,9 кал.

При наличии атмосферы особое значение приобретает такой фактор, влияющий на радиацию, как длина пути солнечного луча в атмосфере. Чем большую толщу воздуха должен пронизывать солнечный луч, тем больше потеряет он энергии в процессах рассеяния, отражения и поглощения. Длина пути луча непосредственно зависит от высоты Солнца над горизонтом и, следовательно, от времени суток и времени года. Если длину пути солнечного луча сквозь атмосферу при высоте Солнца 90° принять за единицу, тогда длина пути при высоте Солнца 40° удвоится, при высоте 10° станет равной 5,7 и т. д.

Для теплового режима земной поверхности очень важна ещё продолжительность освещения её Солнцем. Так как Солнце светит только днём, то определяющим фактором здесь будет длина дня, меняющаяся по временам года.

Наконец, необходимо помнить, что, хотя интенсивность радиации измеряется по отношению к поверхности, поглощающей всю радиацию, на самом деле солнечная энергия, падающая на различные по своей природе тела, поглощается далеко не одинаково. Отношение отражённой радиации к падающей называется альбедо. Давно известно, что альбедо чёрной почвы, светлых скал, травянистого пространства, зеркала водоёма и т. п. сильно разнятся. Светлые пески отражают 30-35%, чёрная почва (гумус) 26%, зелёная трава 26% радиации. Для свежевыпавшего чистого и сухого снега альбедо может достигать 97%. Влажная почва поглощает радиацию иначе, чем сухая: синяя сухая глина отражает 23% радиации, та же глина мокрая 16%. Следовательно, даже при одном и том же притоке радиации, в одних и тех же условиях рельефа, различные точки земной поверхности будут получать различное количество тепла.

Из периодических факторов, обусловливающих известный ритм в колебаниях радиации, особое значение имеет смена времён года.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вконтакте

Одноклассники

Под солнечной радиацией понимают излучение Солнца, которое измеряется по ее тепловому действию и интенсивности.

Та солнечная радиация, которая непосредственно доходит до поверхности Земли, называется прямой солнечной радиацией . Часть солнечной радиации рассеивается в атмосфере, после чего уже доходит до поверхности планеты, такую радиацию называют рассеянной солнечной радиацией . Прямая и рассеянная радиации вместе составляют суммарную солнечную радиацию .

Суммарную солнечную радиацию определяют по тепловому действию на единицу поверхности за единицу времени. Выражают в калориях или джоулях.

Количество суммарной солнечной радиации, попадающей на поверхность зависит от высоты Солнца, продолжительности дня, свойств атмосферы (ее прозрачности, облачности).

Так как Земля имеет шарообразную форму, то наиболее высоко над горизонтом Солнце поднимается на экваторе. Здесь солнечные лучи падают перпендикулярно поверхности. При движении к полюсам солнечные лучи падают уже под все большим наклоном и поэтому приносят все меньше тепла. Кроме того, чем ближе к экватору, тем длиннее день, и, следовательно, поверхность получает больше тепла.

Однако на суммарную солнечную радиацию влияет не только географическая широта.

Солнечная радиация и её влияние на организм человека и климат

На экваторе высокая облачность и влажность, это препятствует прохождению солнечных лучей. Поэтому здесь суммарная солнечная радиация меньше, чем в континентальном тропическом климате (например, территория Сахары).

Солнце - источник света и тепла, в котором нуждается все живое на Земле. Но помимо фотонов света, оно излучает жесткую ионизирующую радиацию, состоящую из ядер и протонов гелия. Почему так происходит?

Причины возникновения солнечного излучения

Солнечная радиация образуется в дневные часы во время хромосферных вспышек - гигантских взрывов, происходящих в атмосфере Солнца. Часть солнечного вещества выбрасывается в космическое пространство, образуя космические лучи, главным образом состоящие из протонов и небольшого количеств ядер гелия. Эти заряженные частицы спустя 15-20 минут после того, как солнечная вспышка становится видимой, достигают поверхности земли.

Воздух отсекает первичное космическое излучение, порождая каскадный ядерный ливень, который затухает с понижением высоты. При этом рождаются новые частицы - пионы, которые распадаются и превращаются в мюоны. Они проникают в нижние слои атмосферы и попадают на землю, зарываясь вглубь до 1500 метров. Именно мюоны отвечают за образование вторичного космического излучения и естественной радиации, воздействующей на человека.


Спектр солнечного излучения

Спектр солнечного излучения включает как коротковолновые, так длинноволновые области:

  • гамма-лучи;
  • рентгеновское излучение;
  • УФ-радиацию;
  • видимый свет;
  • инфракрасную радиацию.

Свыше 95% излучения Солнца приходится на область «оптического окна» - видимого участка спектра с прилегающими областями ультрафиолетовых и инфракрасных волн.

Что такое солнечная радиация? Виды излучения и его влияние на организм

По мере прохождения через слои атмосферы действие солнечных лучей ослабляется - вся ионизирующая радиация, рентгеновские лучи и почти 98% ультрафиолета задерживаются земной атмосферой. Практически без потерь до земли доходит видимый свет и инфракрасное излучение, хотя и они частично поглощаются молекулами газов и частицами пыли, находящимися в воздухе.

В связи с этим, солнечное излучение не приводит к заметному повышению радиоактивного излучения на поверхности Земли. Вклад Солнца вместе с космическими лучами в формирование общей годовой дозы облучения составляет всего 0,3 мЗв/год. Но это усредненное значение, на самом деле уровень падающего на землю излучения различен и зависит от географического положения местности.

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего - на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой - на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода. При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения - долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Солнечные вспышки - высокая радиационная опасность

Вспышки на Солнце - большая опасность для человека и всего живого на Земле, поскольку плотность потока солнечного излучения может превышать обычный уровень космического излучения в тысячу раз. Так, выдающийся советский ученый А. Л. Чижевский связал периоды образования солнечных пятен с эпидемиями тифа (1883-1917 г) и холеры (1823-1923 г) в России. На основании сделанных графиков он еще в 1930 году предсказал возникновение обширной пандемии холеры в 1960-1962 годах, которая и началась в Индонезии в 1961 году, затем быстро распространилась на другие страны Азии, Африки и Европы.

Сегодня получено множество данных, свидетельствующих о связи одиннадцатилетних циклов солнечной активности со вспышками заболеваний, а также с массовыми миграциями и сезонами бурного размножения насекомых, млекопитающих и вирусов. Гематологи установили увеличение количество инфарктов и инсультов в периоды максимальной солнечной активности. Такая статистика связана с тем, что в это время у людей повышается свертываемость крови, а так как у больных с заболеваниями сердца компенсаторная деятельность угнетена, возникают сбои в его работе вплоть до некрозов сердечной ткани и кровоизлияний в мозг.

Большие солнечные вспышки происходят не так часто - раз в 4 года. В это время увеличивается количество и размер пятен, в солнечной короне образуются мощные коронарные лучи, состоящие из протонов и небольшого количества альфа-частиц. Самый мощный их поток астрологи зарегистрировали в 1956 году, когда плотность космического излучения на поверхности земли увеличилась в 4 раза. Еще одним последствием подобной солнечной активности стало полярное сияние, зафиксированное в Москве и Подмосковье в 2000 году.

Как себя обезопасить?

Конечно, повышенный радиационный фон в горах - не повод отказываться от поездок в горы. Правда, стоит подумать о мерах безопасности и отправиться в путешествие вместе с портативным радиометром, который поможет контролировать уровень радиации и при необходимости ограничить время пребывания в опасных районах. В местности, где показании счетчика показывают величину ионизирующего облучения в 7 мкЗв/ч, не стоит находиться больше одного месяца.

Суммарная солнечная радиация и радиационный баланс

Суммарная радиация – это сумма прямой (на горизонтальную поверхность) и рассеянной радиации. Состав суммарной радиации, т. е. соотношение между прямой и рассеянной радиацией, меняется в зависимости от высоты солнца, прозрачности, атмосферы и облачности.

До восхода солнца суммарная радиация состоит полностью, а при малых высотах солнца – преимущественно из рассеянной радиации. С увеличением высоты солнца доля рассеянной радиации в составе суммарной при безоблачном небе уменьшается: при h = 8° она составляет 50%, а при h = 50° – только 10-20%.

Чем прозрачнее атмосфера, тем меньше доля рассеянной радиации в составе суммарной.

3. В зависимости от формы, высоты и количества облаков доля рассеянной радиации увеличивается в разной степени. Когда солнце закрыто плотными облаками, суммарная радиация состоит только из рассеянной. При таких облаках рассеянная радиация лишь частично восполняет уменьшение прямой, и поэтому увеличение количества и плотности облаков в среднем сопровождается уменьшением суммарной радиации. Но при небольшой или тонкой облачности, когда солнце совсем открыто или не полностью закрыто облаками, суммарная радиация за счет увеличения рассеянной может оказаться больше, чем при ясном небе.

Суточный и годовой ход суммарной радиации определяется главным образом изменением высоты солнца: суммарная радиация изменяется почти прямо пропорционально изменению высоты солнца.

Солнечная радиация или ионизирующее излучение солнца

Но влияние облачности и прозрачности воздуха сильно усложняет эту простую зависимость и нарушает плавный ход суммарной радиации.

Суммарная радиация существенно зависит также от широты места. С уменьшением широты ее суточные суммы увеличиваются, причем, чем меньше широта места, тем равномернее суммарная радиация распределяется по месяцам, т. е. тем меньше амплитуда ее годового хода. Например, в Павловске (φ = 60°) ее месячные суммы составляют от 12 до 407 кал/см 2 , в Вашингтоне (φ = 38,9°) – от 142 до 486 кал/см 2 , а в Такубае (φ = 19°) – от 307 до 556 кал/см 2 . Годовые суммы суммарной радиации также увеличиваются с уменьшением широты. Однако в отдельные месяцы суммарная радиация в полярных районах может быть больше, чем в более низких широтах. Например, в бухте Тихой в июне суммарная радиация на 37% больше, чем в Павловске, и на 5% больше чем в Феодосии.

Непрерывные наблюдения в Антарктиде за последние 7-8 лет показывают, что месячные суммы суммарной радиации в этом районе в самом теплом месяце (декабре) примерно в 1,5 раза больше, чем на таких же широтах в Арктике, и равны соответствующим суммам в Крыму и в Ташкенте. Даже годовые суммы суммарной радиации в Антарктиде больше, чем, например, в Санкт-Петербурге. Такой значительный приход солнечной радиации в Антарктиде объясняется сухостью воздуха, большой высотой антарктических станций над уровнем моря и высокой отражательной способностью снежной поверхности (70-90%), увеличивающей рассеянную радиацию

Разность между всеми приходящими на деятельную поверхность и уходящими от нее потоками лучистой энергии называется радиационным балансом деятельной поверхности. Иначе говоря, радиационный баланс деятельной поверхности представляет собой разность между приходом и расходом радиации на этой поверхности. Если поверхность горизонтальна, то к приходной части баланса относятся прямая радиация, приходящая на горизонтальную поверхность, рассеянная радиация и встречное излучение атмосферы. Расход радиации слагается из отраженной коротковолновой, длинноволнового излучения деятельной поверхности и отраженной от нее части встречного излучения атмосферы.

Радиационный баланс представляет собой фактический приход, или расход лучистой энергии на деятельной поверхности, от которого зависит, будет ли происходить ее нагревание или охлаждение. Если приход лучистой энергии больше ее расхода, то радиационный баланс положителен и поверхность нагревается. Если же приход меньше расхода, то радиационный баланс отрицателен и поверхность охлаждается. Радиационный баланс в целом, как и отдельные составляющие его элементы, зависит от многих факторов. Особенно сильно на него влияют высота солнца, продолжительность солнечного сияния, характер и состояние деятельной поверхности, замутнение атмосферы, содержание в ней водяного пара, облачность и др.

Мгновенный (минутный) баланс днем обычно положителен, особенно летом. Примерно за 1 час до захода солнца (исключая зимнее время) расход лучистой энергии начинает превышать ее приход, и радиационный баланс становится отрицательным. Приблизительно через 1 час после восхода солнца он снова становится положительным. Суточный ход баланса днем при ясном небе примерно параллелен ходу прямой радиации. В течение ночи радиационный баланс обычно изменяется мало, но под влиянием переменной облачности он может изменяться значительно

Годовые суммы радиационного баланса положительны на всей поверхности суши и океанов, кроме районов с постоянным снежным или ледяным покровом, например Центральной Гренландии и Антарктиды. Севернее 40° северной широты и южнее 40° южной широты зимние месячные суммы радиационного баланса отрицательны, причем период с отрицательным балансом увеличивается в направлении к полюсам. Так, в Арктике эти суммы положительны только в летние месяцы, на широте 60° – в течение семи месяцев, а на широте 50° – в течение девяти месяцев. Годовые суммы радиационного баланса меняются при переходе с суши на море.

Радиационный баланс системы Земля-атмосфера представляет собой баланс лучистой энергии в вертикальном столбе атмосферы сечением 1 см 2 , простирающемся от деятельной поверхности до верхней границы атмосферы. Его приходная часть состоит из солнечной радиации, поглощенной деятельной поверхностью и атмосферой, а расходная – из той части длинноволнового излучения земной поверхности и атмосферы, которая уходит в мировое пространство. Радиационный баланс системы Земля-атмосфера положителен в поясе от 30° южной широты до 30° северной широты, а в более высоких широтах он отрицателен

Изучение радиационного баланса представляет большой практический интерес, так как этот баланс является одним из основных климатообразующих факторов. От его величины зависит тепловой режим не только почвы или водоема, но и прилежащих к ним слоев атмосферы. Знание радиационного баланса имеет большое значение при расчетах испарения, при изучении вопроса о формировании и трансформации воздушных масс, при рассмотрении влияния радиации на человека и растительный мир.

Страница 1 из 4

РАСПРЕДЕЛЕНИЕ ТЕПЛА И СВЕТА НА ЗЕМЛЕ

Солнце — звезда Солнечной системы, которая является для планеты Земля источником громадного количества тепла и ослепительного света. Несмотря на то, что Солнце находится от нас на значительном расстоянии и до нас доходит лишь небольшая часть его излучения, этого вполне достаточно для развития жизни на Земле. Наша планета вращается вокруг Солнца по орбите.

Солнечная радиация

Если с космического корабля наблюдать Землю в течение года, то можно заметить, что Солнце всегда освещает только какую-либо одну половину Земли, следовательно, там будет день, а на противоположной половине в это время будет ночь. Земная поверхность получает тепло только днем.

Наша Земля нагревается неравномерно.

Неравномерный нагрев Земли объясняется ее шарообразной формой, поэтому угол падения солнечного луча в разных районах различен, а значит, различные участки Земли получают различное количество тепла. На экваторе солнечные лучи падают отвесно, и они сильно нагревают Землю. Чем дальше от экватора, тем угол падения луча становится меньше, а следовательно, и меньшее количества тепла получают эти территории. Один и тот же по мощности пучок солнечного излучения обогревает у экватора гораздо меньшую площадь, так как он падает отвесно. Кроме того, лучи, падающие под меньшим углом, чем на экваторе, — пронизывая атмосферу, проходят в ней больший путь, вследствие чего часть солнечных лучей рассеивается в тропосфере и не доходит до земной поверхности. Все это свидетельствует о том, что при удалении от экватора к северу или к югу уменьшается температура воздуха, так как уменьшается угол падения солнечного луча.

23 4 Следующая >В конец >>