Расчет регистров программа. Регистры отопления из стальных труб: их плюсы и минусы. Расчет регистров из гладких труб

19.06.2019

Для подачи тепла в жилых и общественных помещениях устанавливают регистры отопления из гладких труб. Это приборы, которые предназначены для повышения степени эффективности обмена тепла между внешней средой и теплоносителем.

Регистры состоят из нескольких гладкостенных стальных труб, соединенных специальными патрубками меньшего диаметра. По своей форме они напоминают зигзаг или «заборчик». В связи с этим различают секционные, змеевиковые, регистры из гладких труб с колонками, регистры с ТЭНами.

Особенности теплообменников

Секционные регистры

Такие приборы состоят из одной или сразу нескольких труб, которые закрыты заглушками. Через патрубок горячая вода поступает в верхнюю трубу, после чего перетекает в следующую, расположенную на уровень ниже. По такому принципу вода распределяется по всем частям прибора.

Переход из одной секции в другую делается как можно ближе к краю, чтобы обеспечить достаточное поступление рабочей среды и высокую отдачу тепла.

Изготавливают такой теплообменник из стальных труб с диаметром от 25 до 400 мм. Широко используют регистры из гладких труб с диаметром 76 мм, 89 мм, 108 мм, 159 мм. Патрубки для входа и выхода делают резьбовыми, фланцевыми или же приваренными. Заглушки – плоскими или эллиптическими. В комплект к такому прибору входит штуцер с резьбой, к которому присоединяется воздухоотводчик. Теплообменник может выдержать рабочее давление в 10 кгс/см 2 или в 1Мпа.

Змеевиковые теплообменники

Такой тип теплообменника изготавливается из одной цельной трубы. Гладкотрубные регистры s-образной формы эффективны по своей теплоотдаче, поскольку тепло отдает вся поверхность трубы.

Змеевиковая форма обогревателя

Еще одно преимущество – подобная конфигурация не предусматривает наличия участков сужения труб. Эта особенность предотвращает повышение гидравлического сопротивления.

Традиционно регистры для отопления изготавливаются из гладкостенной стали, чаще углеродистой, хотя встречаются и самодельные чугунные модели, трубы из нержавейки или низколегированной стали.

Трубы для регистровых теплообменников

Компактность и высокая эффективность регистров позволяет широко использовать их в строительстве жилых, офисных помещений и тех объектов, которые характеризуются повышенными санитарными и пожарными нормами.

Регистры с нагревателем

Приборы с ТЭНом устанавливают в тех помещениях, где есть проблемы с прокладкой коммуникационных магистралей.

Мощность нагревательного элемента колеблется в пределах от 1.6 до 6 кВт при напряжении в 220 В. В рабочем состоянии ТЭН поддерживает температуру поверхности регистра в пределах 80˚С.

Для повышения эффективности теплообменных процессов прибор комплектуют циркуляционным насосом.

Работая как элемент центральной отопительной системы, нагреватель реагирует на понижение и повышение температуры. В соответствии с этим он либо компенсирует потери тепла, либо наоборот отключается.

У таких теплообменников много преимуществ:

  • пожаробезопасность;
  • легкодоступность во время чистки;
  • большая площадь теплоотдачи;
  • экономность;
  • многофункциональность.

Изготовление отопительных регистров

Предварительные расчеты

Чтобы сделать теплообменник своими руками, нужно выполнить расчет регистра из гладких труб.

  • Формула

За основу расчетов берут следующую формулу:

Q = Пи х dн х l х k х (tг - to)х(1 - ηиз),

в которой

число Пи – 3,14;

dн – наружный диаметр трубопровода (в метрах);

I – длина секции (в метрах);

k – коэффициент (равен11.63 Вт/м²*°С);

to – температура в помещении, предназначенном для установки прибора;

tr – температура рабочей среды в трубопроводе;

ηиз – коэффициент сохранения тепла изоляцией (если прибор не изолирован, данный коэффициент приравнивается нулю, если изоляция существует, ηиз = 0,6÷0,8).

Полученный результат покажет тепловую мощность для регистров из гладких труб, которая применяется к одной горизонтальной трубе. Если в приборе несколько рядов, на каждый дополнительный ряд используют понижающий коэффициент 0.9.

Если у вас возникают трудности с тем, как рассчитать регистр из гладких труб, найдите онлайн-калькуляторы. Как показала практика, такой способ решения проблемы не всегда точен, поэтому рекомендуют полученный результат перепроверять формулой и только после этого приступать к изготовлению прибора.

  • Стандарты

Монтаж регистров осуществляется по стандартам ГОСТ. Для фиксации понадобится сварочный аппарат, поскольку крепление должно выдержать вес рабочей среды и вес самого теплообменника.

Характеристики

Принцип работы регистров из гладких труб

Регистры из гладких труб имеют следующие технические характеристики:

  • не требуют применения высокопрофессионального оборудования (используют угловую шлифмашину, электросварку);
  • отапливают большие помещения, имея при этом всего лишь регистр из 2-х или 4-х гладких труб;
  • изготавливаются из доступного материала (нержавейка, сталь, чугун);
  • доступны для различных рабочих сред (работают не только на воде, но и на пару, масле и других жидкостях);
  • многовариантны по своей форме, использованию фурнитур, материалов покрытия, заглушек;
  • в изготовлении возможно использование чертежей повторного применения;
  • доступны по своей ценовой политике.

Регистр из гладких труб в жилом помещении

Обходится сварка регистров отопления недорого, и отапливать помещения с их использованием можно достаточно эффективно. Но при этом, к сожалению, смотрится такое отопительное оборудование не особенно эстетично. В городских квартирах регистры, тем более самодельные, конечно же, не устанавливаются.

Используют такие приборы чаще всего в гаражах, хозблоках и других подобных хозяйственных постройках. Иногда регистры отопления устанавливают и на дачах или даже в жилых частных домах.

Что представляют собой приборы

Собираются отопительные регистры из профильных или же обычных гладких круглых труб большого диаметра. Состоять такой прибор может как из одной, так и из нескольких секций. В малоэтажных загородных жилых домах и в гаражах обычно используется второй вариант регистров.

Материалом изготовления для такого оборудования может служить алюминий, чугун, медь, сталь. Своими руками отопительные регистры, конечно же, чаще всего делают с использованием недорогих толстостенных стальных труб.

Виды приборов

В частных домах и в хозяйственных постройках могут использоваться регистры:

  • змеевые;
  • секционные.

В первом случае прибор собирается с использованием стальных дуг. Также змеевые регистры зачастую изготавливаются из стальной гофрированной трубы, просто путем укладки «змейкой».

Секционные модели представляют собой приборы, состоящие обычно из установленных в горизонтальной плоскости отрезков труб большого диаметра. Перемычки в таком оборудование также вырезаются из труб. При этом для сварки регистров применяется материал диаметр которого должен быть равен диаметру обратки и подачи контура системы отопления.

Конечно же, своими руками владельцы частных малоэтажных зданий и гаражей изготавливают обычно именно секционные регистры. Разумеется, при желании самостоятельно можно сделать и змеевой прибор такого типа. Однако в данном случае придется приобретать или дорогостоящую гофрированную стальную трубу или такое также недешевое оборудование, как трубогиб.

Расчет регистров: основные этапы

Конечно же, прежде чем приступать к изготовлению отопительных приборов этого типа, следует составить их подробные чертежи. Расчет регистров отопления при самостоятельном изготовлении производится обычно в два этапа:

При расчете регистров при этом определяют:

  • необходимый диаметр труб;
  • число секций;
  • шаг между секциями;
  • длину отрезков-секций.

Считается, что оптимальным диаметром труб для сварки отопительных регистров своими руками для хозблока или дома является 32 мм. При желании для сборки подобных приборов можно, конечно же, взять и более габаритный материал. Однако все же считается, что для установки в малоэтажном здании подходят лишь регистры, собранные из труб диаметром не более 80 мм.

Если приборы будут сварены из слишком толстой трубы, обратку и подачу в сети отопления частного жилого здания придется подключать к очень мощному котлу, установка которого, скорее всего, будет экономически нецелесообразной.

Длину секций при расчете регистров определяют, конечно же, прежде всего с учетом планировки данного конкретного помещения. В большинстве случаев такие приборы сваривают своими руками из отрезков труб длиной в 1 м.

Расстояние между секциями в собранном самостоятельно регистре должно быть достаточно большим. Чем дальше будут отстоять друг от друга трубы, тем эффективнее прибор будет обогревать помещения. Чаще всего при сборке регистра горизонтальные секции располагают на расстоянии в 1.5 диаметра использованных для его изготовления труб.

Расчет общей необходимой теплоотдачи

Проект отопительной системы с регистрами, конечно же, должен составляться таким образом, чтобы проживать в доме в последующем было максимально комфортно. В помещениях здания не должно быть слишком холодно или же жарко.

Расчет общей необходимой теплоотдачи для регистров производится точно так же, как и для обычных радиаторов отопления. Специалисты, составляя проект такой системы обогрева, обычно учитывают множество самых разных факторов — материал изготовления стен здания, количество окон и дверей, климатические особенности местности и пр.

Но при самостоятельно проектировании чаще используется все же более простая методика проведения расчетов. В данном случае за основу при определении общей необходимой теплоотдачи регистров принимается во внимание только то, что для обогрева 10 м² площади помещения требуется 1 кВт мощности приборов. То есть, к примеру, для эффективного отопления дома в 50 м² в его комнатах нужно будет установить регистры, общая теплоотдача которых составит 5 кВт.

Расчет теплоотдачи каждого регистра

После того как показатель общей нужной теплоотдачи отопительных приборов в здании будет определен, можно приступать к разработке чертежей самих регистров. Для определения необходимой производительности каждого из таких устройств допускается использовать две основных методики расчета:

Расчет по площади

Этот способ проектирования используется обычно для расчета параметров регистров, монтируемых в небольшом по площади помещении, к примеру, в гараже. В этом случае расчеты делают с учетом отопительной способности погонного метра трубы. Узнать этот показатель можно из специальной таблицы.

Согласно этой таблице, к примеру, 1 п/м трубы из стали на 60 мм обеспечивает качественный обогрев 1 м² помещения с высотой потолков в 2.5 м. Исходя из этого, несложно будет сделать расчет нужного количества приборов, длины и количества их секций.

Единственное, в данном случае нужно учитывать тот факт, что каждая последующая (если считать от подачи) секция регистра имеет несколько меньшую теплоотдачу, чем предыдущая. Полученный с использованием таблицы результат, в данном случае поэтому желательно дополнительно умножить на коэффициент 0.9.

Расчет с учетом температурного режима системы отопления

Эта методика позволяет определить необходимую теплоотдачу регистров гораздо более точно. Применяют ее при установке приборов, к примеру, в малоэтажных домах. В этом случае для расчета конструкции и количества приборов используется следующая формула:

  • Q=St*Δt*К, где

Q — мощность трубы по теплоотдаче, St — площадь теплообмена, Δt — показатель теплового напора, K — коэффициент теплоотдачи материала изготовления (для стали — 11,63 Вт/м²*˚С), . Площадь теплообмена при этом обычно вычисляют по формуле:

  • St = π*L*D, где

D — диаметр материала изготовления, L — его длина. Для расчета напора применяют формулу:

  • Δt = 0,5(То+Тп)-Тв, где

Тп — температура воды в подаче, То — температура в обратке, Тв — нужная температура воздуха в здании (обычно принимается за +20 С°).

Как правильно сделать регистр своими руками

Собрать подобный прибор отопления самостоятельно проще всего будет с использованием следующей технологии:

  • трубы нарезаются на отрезки, согласно выполненному расчету;
  • на концах отрезков, ближе к краю, делаются отметки расположения перемычек;
  • из трубы диаметра, равного подаче, вырезаются собственно сами перемычки;
  • трубы раскладываются на ровной горизонтальной поверхности параллельно друг другу;
  • с помощью сварки в трех местах прихватываются все перемычки-отрезки;
  • перемычки привариваются к секциям.

Устанавливать перемычки при сборке радиатора отопления следует как можно ближе к краю горизонтальных секций. В этом случае теплоотдача регистра в последующем будет выше. На заключительном этапе:

  • из листового металла вырезаются заглушки для секций;
  • все заглушки прихватываются к торцам точечно или диагонально;
  • элементы привариваются на место.

Вырезать заглушки следует таким образом, чтобы при их монтаже по краю каждой секции оставалась небольшая «фаска». Эта «фаска» в последующем заполняется сварным швом.

Сваренные таким образом регистры желательно дополнительно оборудовать воздухоотводчиками. Проще говоря, в каждой верхней секции такого прибора стоит установить стандартный кран Маевского.

Врезка в систему

Технология подключения сваренных своими руками регистров будет зависеть прежде всего от особенности конструкции самой системы отопления дома. При седельной врезке в нижней секции прибора по краям предварительно проделываются отверстия. Далее присоединяются подача и обратка и приваривается байпас.

При диагональном или боковом подключении отверстия прорезаются в соответствующих местах в заглушках. Для присоединения обратки и подачи в данном случае могут использоваться в том числе и угловые стальные фитинги.

В последнее время для обогрева промышленных, складских и жилых помещений все чаще применяют специальные регистры отопления (РО) – отопительные приборы, которые состоят из длинных гладкостенных труб, расположенных по всему периметру помещения. Как правило, трубы размещают параллельно полу и между собой соединяют перемычками из труб меньшего диаметра, которые тоже заполняют теплоносителем. Самым простым примером отопительного регистра может служить полотенцесушитель в ванной комнате.

Виды и технические характеристики отопительных регистров

Существует несколько разновидностей данных приборов. Отопительные регистры классифицируют по материалу, форме исполнения и способу установки. Рассмотрим подробнее каждую группу этих устройств.

Принцип работы прибора

По материалу труб

  • Стальные регистры отопления

Самым популярным видом являются приборы, изготовленный из стали. Стоит сказать, что сталь – довольно прочный материал. Он прекрасно сваривается, при этом обладает довольно неплохой теплопроводностью.

Секционный РО из стальных труб

  • Алюминиевые устройства

Приборы из алюминия несколько уступают по популярности стальным. Тем не менее они обладают и некоторыми преимуществами: мало весят, привлекательно выглядят, более устойчивы к коррозии, и хорошо отдают тепло. Единственным и главным недостатком отопительных приборов из алюминиевых труб является их цена.

  • Чугунные регистры

Наименее популярны в настоящее время регистры из чугунных труб. Несмотря на дешевизну, этот материал довольно хрупок и боится механических повреждений. К тому же он плохо сваривается, что существенно затрудняет монтаж.

По форме исполнения

РО могут быть выполнены в двух основных формах:

Секционные – изготавливают такие теплообменники из одной или нескольких гладкостенных труб диаметром от 25 до 400 мм, которые закрывают заглушками и соединяют друг с другом патрубками. Теплоноситель поступает в верхнюю секцию через патрубок, а на противоположном конце перетекает в следующую секцию т.д.

S-образные (змеевиковые) – трубы соединяют дугами, т.е. получается одна сплошная труба. Такая форма позволяет задействовать всю поверхность прибора, что ведет к увеличению эффективной площади теплообменника.

Секционный и змеевиковый РО

По способу установки

Также отопительные регистры делят на стационарные и переносные. Мобильные или переносные приборы данного типа чаще всего используют в помещениях, где необходимо временно поддерживать заданную температуру до монтажа основной системы обогрева. Например, при строительстве нового здания, или в гараже при проведении ремонтных работ. В качестве теплоносителя в таких системах используют синтетическое масло или антифризы, а энергия тепла генерируется электрическими ТЭНами.

Преимущества и недостатки РО

Секционный регистр, состоящий из двух секций

Среди достоинств данных устройств можно выделить следующие:

  1. Высокая надежность и долговечность. Такие отопительные приборы не требует к себе особого внимания в процессе эксплуатации и при этом служат довольно долго. Стальным трубам не потребуется ремонт как минимум 25 лет. Если сварочные работы выполнены качественно, такое устройство может работать даже в условиях высокого давления, что идеально подходит для помещений с централизованным отоплением.
  2. Низкое сопротивление движению теплоносителю за счет большого диаметра труб.
  3. Быстро и равномерно прогревают большие площади.
  4. Отопительные приборы могут быть изготовлены по индивидуальным чертежам застройщика.

Из недостатков стоит отметить:

  1. Громоздкость и специфический внешний вид. Установленные по всему периметру помещения трубы большого диаметра «крадут» полезную площадь и не слишком радуют глаз, хотя при правильном подходе можно оригинально вписать их в концепцию дизайна комнаты, сделав РО интересным дополнением или даже изюминкой интерьера.
  2. Сложность в монтаже. Если систему отопления на основе радиаторов и пластиковых трубопроводов при желании можно смонтировать самостоятельно, то монтаж отопительных регистров должен осуществляться только специалистами сварщиками.

Расчет необходимого количества регистров

Для правильного расчета нужно взять во внимание следующие параметры:

  • площадь помещения;
  • теплоотдача одного квадратного метра поверхности материала, из которых изготавливаются регистры.
  • диаметр труб, которые будут применяться для изготовления отопительных приборов.

Примерный расчет регистров отопления в зависимости от их диаметра указан в таблице ниже.

Данные в таблице указаны при высоте потолка в помещении не более 3 метров. То есть чтобы обогреть гараж площадью 60 метров, необходимо 64 метра трубы диаметром 57 мм или 30 метров трубы диаметром 133 мм. После расчетов нужно сделать чертежи. Кроме того, следует продумать все нюансы расположения РО в помещении.

Подведем итоги. РО вполне могут конкурировать с другими типами отопительных приборов. Подбирать оптимальную конфигурацию оборудованиянеобходимо в каждом конкретном случае индивидуально, учитывая особенности помещения и пожелания владельца дома. Изготовление регистров отопления и их монтаж лучше доверить профессионалам.

Видео: самодельная батарея (регистр)

Многие программисты 1С никогда не сталкивались в своей практике с компонентой «Расчет»,поэтому, когда им приходится сдавать экзамены на Специалиста по Платформе 8.0, где в каждомзадании есть задача по сложным периодическим расчетам, возникают сложности, прежде всего сложности понимания.

Попробуем разобраться с этой компонентой в 8.0. Вместо того чтобы решать различные задачи на расчет попробуем разобраться с этой компонентой так, чтобы можно было решить любую задачу по расчету. Изучив это пособие, вы поймете, как устроены иработают регистры расчета.

Для примера будем использовать каркасную конфигурацию, устанавливаемую на экзаменах.

Честно говоря, я долго пытался придумать, для чего еще нужны расчеты, но не придумал, поэтому будем рассматривать задачу расчета зарплаты.

Что такое расчеты

В принципе, конечный продукт расчета зарплаты - это набор записей регистра расчета вида:

Сотрудник

Период

Вид расчета

Результат

Данные

Комментарий

Измерение

Служебный

Служебный

Реквизит

Значение в колонке «Данные» отражают базовый оклад работника (согласно трудового договора), но эта сумма может быть увеличена премиями, уменьшена штрафами и невыходами и т.п., поэтому реальная сумма к выплате заносится после выполнения расчета в колонку «Результат». В этом и заключается расчет. Сумма по колонке «Ресурс» для данного сотрудника - причитающаяся ему зарплата.

Таким образом регистр расчета - по сути набор записей, по структуре похож на оборотный регистр накопления. Просто для выполнения сложных расчетов для него указываются дополнительные настройки, которые позволяют затем строить много виртуальных таблиц для регистра расчета, хотя, по сути этот регистр - просто набор записей, указанных на рисунке.

Каждая запись регистра расчетов относится к определенному виду расчета и периоду времени.

Виды расчетов

Каждая запись видов расчета имеет служебный реквизит - вид расчетов.

Вид расчетов можно представлять себе как элемент особого справочника типа «План видов расчетов» - он также имеет реквизиты, табличные части, предопределенные и заведенные пользователем элементы. В системе может быть несколько таких «справочников».

Для примера заведем план видов расчета Основной и в нем предопределенные виды расчета оклад , премия , невыход , командировка .

Виды расчета используются функционально для того, чтобы отразить влияние записей регистра расчета друг на друга. Но сокращенно говорят о влиянии видов расчета друг на друга:

Вид расчета

Описание

Пример

По базовому периоду

Результат расчета зависимого периода зависит от результата базового периода. Если результат базового периода изменится, то результат зависимого периода нужно пересчитать.

Премия зависит по базовому периоду от оклада.

Вытеснение по периоду

Период действия зависимого периода вытесняет период действия базового периода, таким образом у базового периода появляется фактический

Невыход влияет на фактический период действия оклада.

Ведущие расчеты

Расчет зависит от ведущего расчета, но не прямо а косвенно, т.е. расчет А зависит от базового расчета Б, а расчет Б зависит от базового расчета В, следовательно А косвенно зависит от В, т.е. А зависит от ведущего расчета В. В самом деле, при изменении расчета В может измениться Б и следовательно может измениться А. Система автоматически не отслеживает такие сложные зависимости, поэтому нужно указывать какие расчеты являются ведущими.

Премия зависит по базе от оклада, но также косвенно зависит и от невыхода.

В силу подобного влияния, период действия записи регистра расчетов делится на четыре периода:

Период

Описание

Период регистрации

В каком периоде зарегистрировано событие, т.е. обычно когда введен документ.

Период действия

В каком периоде действует событие, т.е. к какому периоду относится событие.

Базовый период

Имеет смысл только для периодов, имеющих базовый период - описывает интервал базового периода.

Фактический период действия

Если период действия вытесняется другими видами расчетов, то фактический период действия состоит из нескольких периодов, когда этот вид расчета фактически действует.

Период регистрации задается одним числом - началом периода, соответствующим периодичности регистра расчета. Даже если мы установим в это служебное поле другую дату, он все равно заменится на начало периода. Остальные периоды задаются двумя полями - началом и концом периода.Фактический период действия - это набор периодов, т.к. он может состоять из нескольких интервалов дат.

Графики времени

В системе имеется возможность связывать данные из регистров расчета с графиками времени, чтобы по любому периоду можно было получить количество рабочих часов.

График времени - это простой регистр сведений, одно измерение которого хранит дату, другое связывается с измерением регистром расчета, а один из ресурсов используется для учета времени.

Измерение, которое связывается с регистром расчета обычно носит смысл «вид графика».

Дата

Вид графика

Значение

11.01.05 пт

Пятидневка

11.01.05 пт

Шестидневка

12.01.05 сб

Пятидневка

12.01.05 сб

Шестидневка

Почему используется измерение дата, а не периодический регистр сведений? Все очень просто - если 11 января в пятницу по пятидневке у нас 8 рабочих часов, то это еще не значит, что на следующий день у нас будет опять же 8 рабочих часов. А ведь если бы мы использовали периодический регистр, значение на следующий день бралось бы из предыдущего дня при отсутствии записей.

Таким образом, имея определенный период (фактического действия, регистрации, базовый период и т.п.) мы можем автоматически получить количество часов за этот период по графику.

Перерасчет

Перерасчет чем-то напоминает границу последовательности. Так как у нас есть зависимые расчеты, то при изменении их базовых и ведущих расчетов система должна как-то отметить, что мы должны пересчитать зависимые расчеты.

Для этого и служат перерасчеты.

Если мы рассчитаем базовые записи, то система отметит в перерасчетах, что нам нужно рассчитать зависимые записи. Как только мы рассчитаем зависимые записи, перерасчеты очистятся.

По сути перерасчеты - это список записей регистра расчета, которые нужно перерасчитать .

Если в перерасчетах не заводить ни одного измерения, то при изменении базовых расчетов в список перерасчета занесутся все зависимые записи.

Если мы заведем измерение «Сотрудник» в перерасчете, то при изменении базового расчета по сотруднику в перерасчеты добавятся зависимые записи только по этому сотруднику.

Практическое задание

Достаточно теории. Попробуем изучить детали на практике. За основу возьмем каркасную конфигурацию.

Постановка задачи:

Пусть премия задается фиксированным процентом к окладу (за вычетом невыходов и командировочных).

Командировочные пусть оплачиваются в двойном окладе + фиксированная сумма выплат за каждый день командировки.

Пусть за невыходы с сотрудника взымается штраф в размере половины оклада за период невыхода.

Ход выполнения:

Начальная подготовка

Создадим новый план видов расчета «Основной».

Определим виды расчета и зависимости между ними:

Базовые

Вытесняющие

Ведущие

Оклад

Невыход, Командировка

Премия

Невыход, Командировка

Оклад, Невыход, Командировка

Командировка

Невыход

Занесем эти виды расчета в план видов расчета «Основной» и в свойствахвидов расчета поставим зависимости согласно таблице.

В регистре расчета зарплаты сделаем измерение «Сотрудник» типа «ФизическиеЛица » - чтобы в регистре был разрез аналитики по сотрудникам.

В конфигурации уже имеется документ «Начисление зарплаты».

В нем две даты в шапке - «дата» и «период регистрации», а также по две даты «дата начала» и «датаконца » в каждой строчке.

Подразумевается что дата - это просто дата оформления документа, период регистрации указывает, за какой месяц мы считаем зарплату, а даты в каждой строке описывают период действия каждого вида расчета.

Добавим в модуль документа первоначальную установку реквизита «Данные» - в него будем заносить начальный оклад, установку периода регистрации, периода действия и базового периода.

Модуль документа будет выглядеть примерно так:

Для К аждого ТекСтрокаСписок Из Список Цикл

// регистр Расчеты

Движение = Движения.Р асчеты.Добавить ();

Движение.С торно = Ложь;

Движение.В идРасчета = ТекСтрокаСписок.ВидРасчета ;

Движение.П ериодДействияНачало = НачалоДня (ТекСтрокаСписок.ДатаНачала );

Движение.П ериодДействияКонец = КонецДня ();

Движение.П ериодРегистрации = ПериодРегистрации ;

Движение.Б азовыйПериодНачало = НачалоДня (ТекСтрокаСписок.ДатаНачала );

Движение.Б азовыйПериодКонец = КонецДня (ТекСтрокаСписок.ДатаОкончания );

Движение.С отрудник = ТекСтрокаСписок.Сотрудник ;

Движение.Г рафикРаботы = ТекСтрокаСписок.График ;

Движение.Р езультат = 0;

Движение.Д анные = ТекСтрокаСписок.Размер ;

КонецЦикла ;

Реквизит Сторно нужен чтобы сторнировать записи (аналог минуса).

Проставляем вид расчета, даты приводим к началу и концу дня. Конечно базовый период можно проставлять только у зависимых по базе видов расчета, а Данные можно проставлять только у оклада, но и так все работает.

Все документы датировать будем 20.01.2003, период регистрации будем ставить 02.01.2003 (специально указываю не начальные и конечные данные, здесь это неважно, все равно при записи в ПериодРегистрации преобразуется в начало периода 01.01.2003). Январь 2003 года используем, потому что за этот период заполнены графики работ.

Заведем перерасчет «Перерасчет», добавим в него измерение «Сотрудник», связанное с измерением «Сотрудник».

Играем с Перерасчетами.

Для игры откроем консоль запроса - обработка «ПроизовльныйЗапрос » в каркасной конфигурации. Создадим новый запрос конструктором запроса, добавим туда виртуальную таблицу Перерасчеты.Р асчеты.Перерасчет , текст запроса будет таким:

ВЫБРАТЬ

РасчетыПерерасчет.О бъектПерерасчета ,

РасчетыПерерасчет.В идРасчета ,

РасчетыПерерасчет.С отрудник

ИЗ

РегистрРасчета.Р асчеты.Перерасчет КАК РасчетыПерерасчет

Сформируем три документа - первым начислим оклад сотрудникам А и Б. Сотрудник А работает с 1 по 31 января, Б работает с 1 по 20 января. Вторым начислим премию сотруднику Б за период с 1 по 31 января, третьим назначим невыход сотруднику А с 20 по 25 января.

Играем с Фактическим периодом действия.

Создадим новый запрос - на этот раз в него добавим данные таблицы РегистрыРасчета.Р асчеты.ФактическийПериодДействия .

Сформируем запрос и увидим, что сотруднику А период действия оклада разбит на два периода - с 1 по 19 и с 26 по 31 января. Надеюсь вам понятно, что период был разбит на два, т.к. невыход вытеснил оклад.

Думаю, механизмы работы регистра расчета проясняются на глазах.

Изучаем графики.

Теперь попробуем начислить зарплату по окладу сотрудника.

Создадим новый запрос по регистру расчета используя виртуальную таблицу РегистрыРасчета.Р асчеты.ДанныеГрафика . У этой виртуальной таблицы можно задать параметр - условие отбора записей, например Сотрудник=&ВыбСотрудник и ВидРасчета=&ВидРасчета и График=&ВидГрафика .

Зададим в параметрах запроса конкретных сотрудников, виды расчета и графиков и посмотрим, сколько часов получается в результате.

Колонка результата

Значение

ЗначениеПериодДействия

На какой период действия в часах была запись в регистре.

ЗначениеФактическийПериодДействия

Сколько сотрудник фактически проработал в часах

ЗначениеБазовыйПериод

Для оклада смысла не имеет, для премии - количество рабочих часов в базовом периоде.

ЗначениеПериодРегистрации

Сколько рабочих часов в периоде регистрации (месяц январь)

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная , правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по по пулярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто , батареи стоят под окнами и обеспечивают т ребуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты , основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее , можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов .

Кратко о существующих типах радиаторов отопления

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.

Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь . Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно .

Возможно, такие батареи МС -140— 500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу.Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
Чг ТС Ал АА БМ
Давление максимальное (атмосфер)
рабочее 6-9 6-12 10-20 15-40 35
опрессовочное 12-15 9 15-30 25-75 57
разрушения 20-25 18-25 30-50 100 75
Ограничение по рН (водородному показателю) 6,5-9 6,5-9 7-8 6,5-9 6,5-9
Подверженность коррозии под воздействием:
кислорода нет да нет нет да
блуждающих токов нет да да нет да
электролитических пар нет слабое да нет слабое
Мощность секции при h=500 мм; Dt=70 ° , Вт 160 85 175-200 216,3 до 200
Гарантия, лет 10 1 3-10 30 3-10

Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр пл ощади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q – требуемая теплоотдача от радиаторов отопления.

S – площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет :

N = Q / Qус

N – рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м ) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 В т т епловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h × 40 (34 )

где h – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам . Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем , подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D × Е × F × G × H × I × J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по по рядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А :

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В :

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень - стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку » — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 ° С и ниже – D= 1,5
  • — 25÷ — 35 ° С D= 1,3
  • до – 20 ° С D= 1,1
  • не ниже – 15 ° С D= 0,9
  • не ниже – 10 ° С D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е :

  • До 2,7 м Е = 1, 0
  • 2,8 3, 0 м Е = 1, 05
  • 3,1 3, 5 м Е = 1, 1
  • 3,6 4, 0 м Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещениеF= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G :

  • обычные деревянные рамы с двойным остеклением – G= 1,27
  • окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1,0
  • однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85

Н – коэффициент пл ощади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н :

  • Отношение менее 0,1 – Н = 0, 8
  • 0,11 ÷ 0,2 – Н = 0, 9
  • 0,21 ÷ 0,3 – Н = 1, 0
  • 0,31÷ 0,4 – Н = 1, 1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки , зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J :

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны части чно прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом– J= 1,2

⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка , многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.