Уровни организации жизни на земле. Организм как единое целое. Клеточный уровень жизни

23.09.2019

Свойства живых организмов

1. Обмен веществ и энергии с окружающей средой (главный признак живого).


2. Раздражимость (способность реагировать на воздействия).


3. Размножение (самовоспроизведение).

Уровни организации живой материи

1. Молекулярный - это уровень сложных органических веществ - белков и нуклеиновых кислот. На этом уровне происходят химические реакции обмена веществ (гликолиз, кроссинговер и т.п.), но молекулы сами по себе еще не могут считаться живыми.


2. Клеточный . На этом уровне возникает жизнь , потому что клетка - минимальная единица, обладающая всеми свойствами живого.


3. Органно-тканевой - характерен только для многоклеточных организмов.


4. Организменный - за счет нервно-гуморальной регуляции и обмена веществ на этом уровне осуществляется гомеостаз , т.е. сохранение постоянства внутренней среды организма.


5. Популяционно-видовой . На этом уровне происходит эволюция , т.е. изменение организмов, связанное с приспособлением их к среде обитания под действием естественного отбора. Наименьшей единицей эволюции является популяция.


6. Биогеоценотический (совокупность популяций разных видов, связанных между собой и окружающей неживой природой). На этом уровне происходит

  • круговорот веществ и превращение энергии , а так же
  • саморегуляция , за счет которой поддерживается устойчивость экосистем и биогеоценозов.

7. Биосферный . На этом уровне происходит

  • глобальный круговорот веществ и превращение энергии , а так же
  • взаимодействие живого и неживого вещества планеты.

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каких уровнях организации живого изучают значение фотосинтеза в природе?
1) биосферном
2) клеточном
3) биогеоценотическом
4) молекулярном
5) тканево-органном

Ответ


Выберите один, наиболее правильный вариант. Какой уровень организации живой природы представляет собой совокупность популяций разных видов, связанных между собой и окружающей неживой природой
1) организменный
2) популяционно-видовой
3) биогеоценотический
4) биосферный

Ответ


Выберите один, наиболее правильный вариант. Генные мутации происходят на уровне организации живого
1) организменном
2) клеточном
3) видовом
4) молекулярном

Ответ


Выберите один, наиболее правильный вариант. Элементарная структура, на уровне которой проявляется в природе действие естественного отбора
1) организм
2) биоценоз
3) вид
4) популяция

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки служат сходными для живых и неживых объектов природы?
1) клеточное строение
2) изменение температуры тела
3) наследственность
4) раздражимость
5) перемещение в пространстве

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каких уровнях организации живого изучают особенности реакций фотосинтеза у высших растений?
1) биосферном
2) клеточном
3) популяционно-видовом
4) молекулярном
5) экосистемном

Ответ


Ниже приведен перечень понятий. Все они, кроме двух, являются уровнями организации живого. Найдите два понятия, «выпадающих» из общего ряда, и запишите цифры, под которыми они указаны.
1) биосферный
2) генный
3) популяционно-видовой
4) биогеоценотический
5) биогенный

Ответ


1. Установите, в какой последовательности располагаются уровни организации живого. Запишите соответствующую последовательность цифр.
1) популяционный
2) клеточный
3) видовой
4) биогеоценотический
5) молекулярно-генетический
6) организменный

Ответ


2. Установите последовательность усложнения уровней организации живого. Запишите соответствующую последовательность цифр.
1) биосферный
2) клеточный
3) биогеоценотический
4) организменный
5) популяционно-видовой

Ответ


3. Расположите в правильном порядке уровни организации жизни, начиная с наименьшего.
1) биоценоз
2) популяция
3) нейрон
4) многоклеточный организм
5) биосфера

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Клеточный уровень организации совпадает с организменным у
1) бактериофагов
2) амёбы дизентерийной
3) вирус полиомиелита
4) кролика дикого
5) эвглены зелёной

Ответ


2. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Клеточному и организменному уровням организации жизни одновременно соответствуют.
1) гидра пресноводная
2) спирогира
3) улотрикс
4) амеба дизентерийная
5) цианобактерия

Ответ


3. Выберите два верных ответа. У каких организмов совпадают клеточный и организменный уровни жизни?
1) серобактерия
2) пеницилл
3) хламидомонада
4) пшеница
5) гидра

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Одна амеба обыкновенная одновременно находится на:
1) Молекулярном уровне организации жизни
2) Популяционно-видовом уровне организации жизни
3) Клеточном уровне организации жизни
4) Тканевом уровне организации жизни
5) Организменном уровне организации жизни

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Живое от неживого отличается
1) способностью изменять свойства объекта под воздействием среды
2) способностью участвовать в круговороте веществ
3) способностью воспроизводить себе подобных
4) изменять размеры объекта под воздействием среды
5) способность изменять свойства других объектов

Ответ


2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки присущи только живому веществу?
1) рост
2) движение
3) самовоспроизведение
4) ритмичность
5) наследственность

Ответ


3. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Для всех живых организмов характерно
1) образование органических веществ из неорганических
2) поглощение из почвы растворённых в воде минеральных веществ
3) активное передвижение в пространстве
4) дыхание, питание, размножение
5) раздражимость

Ответ


4. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки характерны только для живых систем?
1) способность к передвижению
2) обмен веществ и энергии
3) зависимость от температурных колебаний
4) рост, развитие и способность к самовоспроизведению
5) устойчивость и относительно слабая изменчивость

Ответ


Установите соответствие между уровнями организации живого и их характеристиками и явлениями: 1) биоценотический, 2) биосферный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) процессы охватывают всю планету
Б) симбиоз
В) межвидовая борьба за существование
Г) передача энергии от продуцентов консументам
Д) испарение воды
Е) сукцессия (смена природных сообществ)

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Онтогенез, метаболизм, гомеостаз, размножение происходят на … уровнях организации.
1) клеточном
2) молекулярном
3) организменном
4) органном
5) тканевом

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. На популяционно-видовом уровне организации жизни находятся
1) рыбы озера Байкал
2) птицы Арктики
3) Амурские тигры Приморского края России
4) городские воробьи Парка культуры и отдыха
5) синицы Европы

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Какие из уровней организации жизни являются надвидовыми?
1) популяционно-видовой
2) органоидно-клеточный
3) биогеоценотический
4) биосферный
5) молекулярно-генетический

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Клеточному уровню организации жизни соответствует
1) хламидомонада
2) серобактерия
3) бактериофаг
4) ламинария
5) лишайник

Ответ


Выберите два варианта. Энергетический обмен у обыкновенной амёбы происходит на уровне организации живого
1) клеточном
2) биосферном
3) организменном
4) биогеоценотическом
5) популяционно-видовом

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каком уровне организации происходят такие процессы, как раздражимость и обмен веществ?
1) популяционно-видовой
2) организменный
3) молекулярно-генетический
4) биогеоценотический
5) клеточный

Ответ

© Д.В.Поздняков, 2009-2019

Уровни организации живых систем. Клеточный уровень. Основные положения

современной клеточной теории.

Молекулярно-генетический уровень(элементарная единица- ген)

Клеточный уровень (клетка)

Организменный уровень, по-другому онтогенетический (особь)

Популяционно-видовой (популяция)

Биогеоценотический (биогеоценозы)

Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов).элементарные явления представлены реакциями клеточного метаболизма. Благодаря деятельности клетки поступающие извне вещества превращаются в субстраты и энергию,которые утилизируются в процессе биосинтеза белков в соответствии с существующей информацией. таким образом на клеточном уровне сопрягаются механизмы передачи информации и превращения веществ и энергии. Элементарные явления на этом уровне создают энергетическую и вещественную основу жизни на других уровнях. Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология Современная клеточная теория включает следующие основные положения:

№1 Клетка - единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет;.

№2 Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование;

№3 Клетки всех организмов сходны по своему химическому составу, строению и функциям;

№4 Новые клетки образуются только в результате деления исходных клеток;

№5 Клетки многоклеточных организмов образуют ткани, из тканей органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток;

№6 Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток – дифференцировка.

Структурно-функциональная организация про- и эукариотических клеток.

Клетки прокариотического типа имеют особенно малые размеры (не более 0,5-3,0мкм в диаметре) . у них нет морфологически обособленного ядра, т.к. ядерный материал в виде ДНК не отграничен от цитоплазмы оболочкой. В клетке отсутствует развитая система мембран. Генетический аппарат образован единственной кольцевой хромосомой, которая лишена основных белков- гистонов. У прокариот отсутствует клеточный центр. Для них не типичны внутриклеточные перемещения цитоплазмы и амебоидное движение. Время, необходимое для образования двух дочерних клеток (время генерации), сравнительно мало и исчесляется десятками минут. Прокариотические клетки не делятся митозом. К этому типу клеток относятся бактерии и сине-зеленые водоросли. Эукариотический тип клеточной организации представлен двумя подтипами. Особенностью организмов простейших является то, что они (исключая колониальные формы) соответствуют в структурном отношении уровню одной клетки, а в физиологическом - полноценной особи. В связи с этим одной из черт клеток части простейших является наличие в цитоплазме миниатюрных образований, выполняющих на клеточном уровне функции жизненно важных органов многоклеточного организма. Таковы (например, у инфузорий) цитостом, цитофарингс и порошица, аналогичные пищеварительной системе, и сократительные вакуоли, аналогичные выделительной системе. Клетки многоклеточных организмов имеют оболочку. Плазмолемма (клеточная оболочка) образована мембраной покрытой снаружи слоем гликокаликса. В клетке выделяют ядро и цитоплазму. В ядре есть оболочка, ядерный сок, ядрышко, хроматин. Цитоплазма представлена основным веществом(матрикс, гиалоплазма), в котором распределены включения и органеллы(шероховатая и гладкая эпс, пластинчатый комплекс, митохондрии, рибосомы, полисомы, лизосомы, периксисомы, микрофибриллы, микротрубочки, центриоли клеточного центра. В растительных клетках выделяют еще и хлоропласты.
В традиционном изложении клетку растительного или животного организма описывают как объект, отграниченный оболочкой, в котором выделяют ядро и цитоплазму. В ядре наряду с оболочкой и ядерным соком обнаруживаются ядрышко и хроматин. Цитоплазма представлена ее основным веществом (матриксом, гиалоплазмой), в котором распределены включения и органеллы.

Жизненный цикл клетки. Его периоды для клеток с разной степенью

Дифференцировки.

ЖЦК- это период жизни клетки от ее образования (путем деления материнской клетки) до ее деления или смерти.

ЖЦК способных к делению клеток:

Митотический цикл: -автокаталитическая фаза-подготовка к делению. состоит из G1 периода(синтетический), S(синтетический) , G2(постсинтетический).

В многоклеточном организме есть клетки которые после своего рождения вступают в период покоя G0 (это клетки выполняющие специфические функции в составе той или иной функции)

ЖЦК не способных к делению клеток:

Гетерокаталитическая интерфаза

Митотический цикл. Митоз. Биологическое значение митоза. Возможная

патология митоза.

Митотический цикл состоит из автокаталитической интерфазы (G1-хромосомы деконденсированные, накапливаются белки и РНК, увеличивается число митохондрий, ;S- репликация ДНК, продолжается синтез белков и РНК;,G2- остановка синтеза ДНК, накапливается энергия, синтезируются РНК и белки, формирующие нити веретена деления) и митоза :

Профаза 2n4c – ядерная мембрана растворяется, ядрышко исчезает, происходит конденсация и деспирализация хромосом.

Метафаза 2n4c- хромосомы на экваторе клетки.

Анафаза 4n4c- хроматиды расходятся к полюсам клетки.

Телофаза 2n2c- формирование ядрышка, цитотомия, образование двух дочерних клеток. Биологическое значение митоза.

Биологическое значение митоза огромно. Постоянство строения и правильность функционирования органов и тканей многоклеточного организма было бы невозможным без сохранения идентичного набора генетического материала в бесчисленных клеточных поколениях. Митоз обеспечивает важные явления жизнедеятельности, как эмбриональное развитие, рост, восстановление органов и тканей после повреждения, поддержание структурной целостности тканей при постоянной утрате клеток в процессе их функционирования (замещение погибших эритроцитов, слущившихся клеток кожи и прочее). Патологии митоза:

Нарушение конденсации хромосом ведет к набуханию и слипанию хромосом

Повреждение веретена деления является причиной задержки митоза в метафазе и рассеиванию хромосом

Нарушение расхождения хроматид в анафазу митоза ведет к появлению клеток с различным количеством хромосом

При отсутствии цитотомии в конце телофазы образуются двух- и многоядерные клетки.

Воспроизведение на молекулярном уровне. Репликация ДНК у про- и эукариот.

Одна из основных функций ДНК- сохранение и передача наследственной информации. В основе этой функции лежит способность ДНК к самокопированию- репликация. В результате репликации из одной материнской молекулы ДНК образуются две дочерние молекулы ДНК- копии материнской.

Геликаза-расплетает двойную спираль ДНК

Дестабилизирующие белки – выпрямляют цепи ДНК

ДНК-топоизомераза- разрывает фосфодиэфирные связи в одной из цепей ДНК, снимает напряжение спирали.

РНК-праймаза- обеспечивает синтез РНК-затравки для фрагментов Оказаки

ДНК-полимеразы- синтез полинуклеотидной цепи в направлении 5-3

ДНК-лигаза –сшивает фрагменты Оказаки после удаления ДНК-затравки.

Понятие о репарации ДНК.

Cперматогенез

Фазы сперматогенеза, их сущность. Место сперматогенеза в онтогенезе человека.

Полигенное наследование. Понятие о МФБ. Пример полигенно наследуемой болезни в стоматологии.

Наследование признаков при полимерном взаимодействии генов. В том случае, когда сложный признак определяется несколькими парами генов в генотипе и их взаимодействие сводится к накоплению эффекта действия определенных аллелей этих генов, в потомстве гетерозигот наблюдается разная степень выраженности признака, зависящая от суммарной дозы соответствующих аллелей. Например, степень пигментации кожи у человека, определяемая четырьмя парами генов, колеблется от максимально выраженной у гомозигот по доминантным аллелям во всех четырех парах (Р 1 Р 1 Р 2 Р 2 Р 3 Р 3 Р 4 Р 4) до минимальной у гомозигот по рецессивным аллелям (р 1 р 1 р 2 р 2 р 3 р 3 р 4 р 4) (см. рис. 3.80). При браке двух мулатов, гетерозиготных по всем четырем парам, которые образуют по 2 4 = 16 типов гамет, получается потомство, 1/256 которого имеет максимальную пигментацию кожи, 1/256 - минимальную, а остальные характеризуются промежуточными показателями экспрессивности этого признака. В разобранном примере доминантные аллели полигенов определяют синтез пигмента, а рецессивные - практически не обеспечивают этого признака. В клетках кожи организмов, гомозиготных по рецессивным аллелям всех генов, содержится минимальное количество гранул пигмента.

В некоторых случаях доминантные и рецессивные аллели полигенов могут обеспечивать развитие разных вариантов признаков. Например, у растения пастушьей сумки два гена одинаково влияют на определение формы стручочка. Их доминантные аллели образуют одну, а рецессивные - другую форму стручочков. При скрещивании двух дигетерозигот по этим генам (рис. 6.16) в потомстве наблюдается расщепление 15:1, где 15/16 потомков имеют от 1 до 4 доминантных аллелей, а 1/16, не имеет доминантных аллелей в генотипе.

Многим наследственным признакам нельзя дать достаточно точного качественного описания. Между особями наблюдаются постепенные малозаметные переходы» а при расщеплении нет ясно разграниченных фенотипических классов. Такие признаки изучают путем измерений или подсчетов позволяющих дать признаку цифровую характеристику. Например, вес и размеры тела, плодовитость, урожайность, продуктивность, скороспелость» содержание белков и жиров и т. п. Это и есть количественные признаки.

И хотя четкой границы между качественными и количественными признаками нет (некоторые количественные признаки можно описать как качественные: высокий - карликовый» скороспелый - позднеспелый, а качественные можно выразить количественно, например, различия в окраске - количеством пигмента), можно выделить три важные особенности количественных признаков:

1) непрерывное варьирование;

2) зависимость от большого числа взаимодействующих генов;

3) зависимость от внешней среды, т. е сильная подверженность влиянию модификационной изменчивости, результат которой непрерывен, что еще не смазывает фенотипические различия между генотипическими классами.

Основная масса признаков» с которыми приходится иметь дело селекционеру, - количественные.

Важная особенность полигенного наследования - чем больше генон, влияющих на признак, тем более непрерывной будет изменчивость этого признака. Л изменчивость за счет влияния внешних условий делает распределение количественных признаков еще более плавным и непрерывным. В итоге распределение изменчивости количественных признаков близко к нормальному, те, генотипов, определяющих промежуточные варианты, больше, чем генотипов, определяющих крайние варианты.

Цитогенетический метод

Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.
Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.
В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом:
22 пар аутосом и одной пары половых хромосом (XX - у женщин, XY - у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека.

Цитологический контроль необходим для диагностики хромо- сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского - Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови - хроническому миелолейкозу.

При цитологических исследованиях интерфазных ядер соматических клеток можно обнаружить так называемое тельце Барра, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.

Выявление многих наследствен- ных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.

Адаптация (от лат. adaptatio -- приспособление) - это динамический процесс, благодаря которому подвижные системы живых организмов, несмотря на изменчивость условий, поддерживают устойчивость, необходимую для существования, развития и продолжения рода. Именно механизм адаптации, выработанный в результате длительной эволюции, обеспечивает возможность существования организма в постоянно меняющихся условиях среды.

1.Биологическая адаптация человека акклиматизаций

2.Социальная адаптация - процесс активного приспособления индивида (группы индивидов) к социальной среде, проявляющийся в обеспечении условий, способствующих реализации его потребностей, интересов, жизненных целей. Социальная адаптация включает в себя приспособление прежде всего к условиям и характеру труда (учебы), а также к характеру межличностных отношений, экологической и культурной среде, условиям проведения досуга, быту. Процесс социальной адаптации тесно связан с процессом социализации индивида, интериоризации общественных и групповых норм. Социальная адаптация предполагает как приспособление индивида к условиям жизнедеятельности (пассивная адаптация), так и активное целенаправленное их изменение (активная адаптация). Эмпирически установлено, что доминирование у индивида второго из названных типов адаптационного поведения обуславливает более успешное протекание социальной адаптации. Выявлена также зависимость между характером ценностных ориентаций личности и типом адаптационного поведения. Так, у людей, ориентированных на проявление и совершенствование своих способностей, доминирует установка на активно-преобразовательное взаимодействие с социальной средой, у ориентированных на материальное благополучие - избирательность, целевая ограниченность социальной активности, у ориентированных на комфорт - приспособительное поведение. Ценностные ориентации определяют также требования индивида к характеру и условиям труда, быта, досуга, характеру межличностного общения. Например, монотонный труд на конвейере, как правило, угнетающе воздействует на людей с высоким образовательным уровнем, но удовлетворяет работников с низким уровнем образования и квалификации.

Акклиматиза́ция - приспособление организмов к новым условиям существования после территориального, искусственного или естественного перемещения с образованием стабильных воспроизводящихся групп организмов (популяций); частным случаем акклиматизации является.

Акклиматизация в жарком климате может сопровождаться потерей аппетита, расстройством деятельности кишечника, нарушением сна, понижением сопротивляемости к инфекционным заболеваниям. Отмеченные функциональные отклонения обусловливаются нарушением водно-солевого обмена. Снижается мышечный тонус, увеличивается потоотделение, понижается мочевыделение, учащаются дыхание, пульс и др. По мере увеличения влажности воздуха напряжение механизмов адаптации возрастает.

Климатическую экстремальность для условий проживания населения в экстремально-холодных климатах создают:

· Большая повторяемость (45-65 % дней за год) низких отрицательных температур.

· Недостаток или полное отсутствие (полярная ночь) солнечной радиации зимой.

· Преобладание пасмурной погоды (140-150 дней за год).

· Сильный ветер с частыми низовыми метелями.

36. Биологическая адаптация. Механизмы срочной и долговременной адаптации.

Понятие о конституциональных типах.

Биологическая адаптация человека - эволюционно возникшее приспособление организма человека к условиям среды, выражающееся в изменении внешних и внутренних особенностей органа, функции или всего организма к изменяющимся условиям среды. В процессе приспособления организма к новым условиям выделяют два процесса - фенотипическую или индивидуальную адаптацию, которую более правильно называть акклиматизаций (см.) и генотипическую адаптацию, осуществляемую путем естественного отбора полезных для выживания признаков. При фенотипической адаптации организм непосредственно реагирует на новую среду, что выражается в фенотипических сдвигах, компенсаторных физиологических изменениях, которые помогают организму сохранить в новых условиях равновесие со средой. При переходе к прежним условиям восстанавливается и прежнее состояние фенотипа, компенсаторные физиологические изменения исчезают. При генотипической адаптации в организме происходят глубокие морфо-физиологические сдвиги, которые передаются по наследству и закрепляются в генотипе в качестве новых наследственных характеристик популяций, этнических групп и рас.

Специфические адаптивные механизмы, свойственные человеку, дают ему возможность переносить определенный размах отклонений факторов от оптимальных значений без нарушения нормальных функций организма.

· Срочный этап адаптации возникает непосредственно после начала действия раздражителя на организм и может быть реализован лишь на основе ранее сформировавшихся физиологических механизмов. Примерами проявления срочной адаптации являются: пассивное увеличение теплопродукции в ответ на холод, увеличение теплоотдачи в ответ на тепло, рост легочной вентиляции и минутного объема кровообращения в ответ на недостаток кислорода. На этом этапе адаптации функционирование органов и систем протекает на пределе физиологических возможностей организма, при почти полной мобилизации всех резервов, но не обеспечивая наиболее оптимальный адаптивный эффект. Так, бег нетренированного человека происходит при близких к максимуму величинах минутного объема сердца и легочной вентиляции, при максимальной мобилизации резерва глюкогена в печени. Биохимические процессы организма, их скорость, как бы лимитируют эту двигательную реакцию, она не может быть ни достаточно быстрой, ни достаточно длительной;

· Долговременная адаптация к длительно воздействующему стрессору возникает постепенно, в результате длительного, постоянного или многократно повторяющегося действия на организм факторов среды. Основными условиями долговременной адаптации являются последовательность и непрерывность воздействия экстремального фактора. По существу, она развивается на основе многократной реализации срочной адаптации и характеризуется тем, что в результате постоянного количественного накопления изменений организм приобретает новое качество - из неадаптированного превращается в адаптированный. Такова адаптация к недостижимой ранее интенсивной физической работе (тренировка), развитие устойчивости к значительной высотной гипоксии, которая ранее была несовместима с жизнью, развитие устойчивости к холоду, теплу, большим дозам ядов. Таков же механизм и качественно более сложной адаптации к окружающей действительности.

В настоящее время отсутствует общепринятая теория и классифи­кация конституций.Многообразие подходов,предлагаемых разными специалистами,по­рождает множество оценок, определений конституции,отражает сложность проблем, стоящих перед конституциологией.На сегодняшний день наиболее удачным и полным опреде­лением конституции является следующее.Конституция(лат. constitutia - установление,организация)- это комплекс индивидуальных относительно устойчивых морфологичес­ких,физиологических и психических свойств организма,обусловленных наследственнос­тью,а также длительными и интенсивными влияниями окружающей среды, проявляющи­мися в его реакциях на различные воздействия(в том числе социальные и болезнетворные).

В нашей стране наибольшее распространение получила классификация,прдложенная М.В.Черноруцким.Он выделил три типа конституции:

1) астенический;

2) нормостенический;

3) гиперстенический

Отнесение к тому или иному типу производилось на основании величины индекса Пинье (длина тела - (масса+ объем груди в покое). У астеников индекс Пинье больше 30, у гиперстеников- меньше 10, у нормостеников находится в пределах от10 до 30. Эти три типа конституции характеризуются не только особенностями внешних морфологических признаков, но и функциональных свойств.

37. Экологическая дифференциация человечества. Понятие о расах и адаптивных

типах людей.

38. Адаптивные типы людей. Морфофункциональная характеристика

представителей высокогорного и аридного типов.

Адаптивный тип
представляет собой норму биологической реакции на комплекс условий окружающей
среды и проявляется в развитии морфофункциональных, биохимических и
иммунологических признаков, обеспечивающих оптимальную приспособленность к
данным условиям обитания.

В комплексы признаков адаптивных типов из разных географических зон входят общие и специфические элементы. К первым относят, например, показатели
костно-мускульной массы тела, количество иммунных белков сыворотки крови
человека. Такие элементы повышают общую сопротивляемость организма к
неблагоприятным условиям среды. Специфические элементы отличаются разнообразием
и тесно связаны с преобладающими условиями в данном месте обитания - гипоксией, жарким или холодным климатом.
Именно их сочетание служит основанием к выделению адаптивных типов:
арктического, тропического, зоны умеренного климата, высокогорного, пустынь и
др.

Разберем особенности условий жизни человеческих популяций в различных
климатогеографических зонах и адаптивные типы людей, сформировавшиеся в них.

Условия высокогорья для человека во многих отношениях экстремальны. Их характеризуют низкое атмосферное давление, сниженное парциальное давление кислорода, холод,относительное однообразие пищи. Основным экологическим фактором формирования горного адаптивного типа явилась,по-видимому, гипоксия. У жителей высокогорья независимо от климатической зоны,расовой и этнической принадлежности наблюдаются повышенный уровень основногообмена, относительное удлинение длинных трубчатых костей скелета, расширениегрудной клетки, повышение кислородной емкости крови за счет увеличенияколичества эритроцитов, содержания гемоглобина и относительной легкости егоперехода в оксигемоглобин.

Аридный адаптивный тип сформировался у жителей пустынь. Для пустыни главным вредным фактором является воздействие сухого воздуха, имеющего большую испаряющую способность. Кроме того, в тропических пустынях наблюдается круглогодичное сильное тепловое воздействие, а во внетропической зоне резкие сезонные перепады температуры – жара летом и холод зимой. В этих условиях, так же как и в тропиках, больше распространены длиннотелые морфотипы (до 70 %), мускульный и жировой компоненты развиваются слабо, однако общие размеры тела у жителей пустынь больше. Уровень основного обмена у них невысок, количество холестерина в крови снижено

46. Трансмиссивные и нетрансмиссивные природно-очаговые заболевания.

Экологические основы их выделения.

47. Предмет медицинской гельминтологии. Понятие о гео- и биогельминтах,

антропонозах и зоонозах.

46. ПРИРОДНО-ОЧАГОВЫЕ ЗАБОЛЕВАНИЯ

1) возбудители циркулируют в природе от одного животного к другому независимо от человека;

2) резервуаром возбудителя служат дикие животные;

3) болезни распространены не повсеместно, а на ограниченной территории с определенным ландшафтом, климатическими факторами и биогеоценозами.

Компонентами природного очага являются:

1) возбудитель;

2) восприимчивые к возбудителю животные - резервуары:

3) соответствующий комплекс природно-климатических условий, в котором существует данный биогеоценоз.

Особую группу природно-очаговых заболеваний составляют трансмиссивные болезни , такие, как лейшманиоз, трипаносомоз, клещевой энцефалит и т.д. Поэтому обязательным компонентом природного очага трансмиссивного заболевания является также наличие переносчика.

Трансмиссивные болезни - заразные болезни человека, возбудители которых передаются кровососущими членистоногими (насекомыми и клещами).

Трансмиссивные болезни включают более 200 нозологических форм, вызываемых вирусами, бактериями, риккетсиями, простейшими и гельминтами. Часть из них передаётся только с помощью кровососущих переносчиков (облигатные трансмиссивные болезни, например сыпной тиф, малярия и др.), часть различными способами, в том числе и трансмиссивно (например, туляремия, заражение которой происходит при укусах комаров и клещей, а также при снятии шкурок с больных животных).

Переносчики

инфицированных вирусами, у клещей, инфицированных вирусами, риккетсиями и спирохетами, и у москитов, инфицированных флебовирусами.

В организме механических переносчиков возбудители не развиваются и не размножаются. Попавший на хоботок, в кишечник или на поверхность тела механического переносчика возбудитель передается непосредственно (при укусе) либо путем контаминации ран, слизистых оболочек хозяина или пищевых продуктов.

Характеристика переносчика и механизм передачи возбудителя

Область распространения и особенности эпидемиологии

Профилактика

Профилактика большинства трансмиссивных болезней проводится путем уменьшения численности переносчиков. С помощью этого мероприятия в СССР удалось ликвидировать такие трансмиссивные антропонозы, как вшиный возвратный тиф, москитная лихорадка, городской кожный лейшманиоз. Большое значение имеют проведение мелиоративных работ, создание вокруг населённых пунктов зон, свободных от диких грызунов и переносчиков возбудителей трансмиссивных болезней.

Некоторые природно-очаговые заболевания характеризуются эндемизмом , т.е. встречаемостью на строго ограниченных территориях. Это связано с тем, что возбудители соответствующих заболеваний, их промежуточные хозяева, животные-резервуары или переносчики встречаются только в определенных биогеоценозах.

Небольшое количество природно-очаговых заболеваний встречается практически повсеместно. Это такие заболевания, возбудители которых, как правило, не связаны в цикле своего развития с внешней средой и поражают самых разнообразных хозяев. К заболеваниям такого рода относятся, например, токсоплазмоз и трихинеллез. Этими природно-очаговыми болезнями человек может заразиться в любой природно-климатической зоне и в любой экологической системе.

Абсолютное же большинство природно-очаговых болезней поражает человека только в случае попадания его в соответствующий очаг (на охоте, рыбной ловле, в туристических походах, в геологических партиях и т.д.) при условиях его восприимчивости к ним. Так, таежным энцефалитом человек заражается при укусе инфицированным клещом, а описторхозом - съев недостаточно термически обработанную рыбу с личинками кошачьего сосальщика.

Профилактика природно-очаговых заболеваний представляет особые сложности. В связи с тем, что в циркуляцию возбудителя бывает включено большое количество хозяев, а часто и переносчиков, разрушение целых биогеоценотических комплексов, возникших в результате эволюционного процесса, экологически неразумно, вредно и даже технически невозможно. Лишь в тех случаях, если очаги являются небольшими и хорошо изученными, возможно комплексное преобразование таких биогеоценозов в направлении, исключающем циркуляцию возбудителя. Так, рекультивация опустыненных ландшафтов с созданием на их месте орошаемых садоводческих хозяйств, проводящаяся на фоне борьбы с пустынными грызунами и москитами, может резко снизить заболеваемость населения лейшманиозами. В большинстве же случаев природно-очаговых болезней профилактика их должна быть направлена в первую очередь на индивидуальную защиту (предотвращение от укусов кровососущими членистоногими, термическая обработка пищевых продуктов и т.д.) в соответствии с путями циркуляции в природе конкретных возбудителей.

Черви- это многоклеточные, трехслойные, первичноротые, двусторонне-симметричные животные. Их тело имеет удлиненную форму, а кожно-мускульный мешок состоит из гладких или поперечно-полосатых мышц и покровных тканей.

Гельминты могут обитать у человека практически во всех органах. В соответствии с этим различны пути проникновения их в организм человека, симптоматика заболеваний и методы диагностики.

Все живые существа на планете подразделяются по различным группам и системам. Об этом рассказывает ученику биология еще в начальных классах средней школы. Сейчас же хочется весьма подробно изучить уровни организации живой природы, в итоге представив все полученные знания в краткой и удобной для понимания таблице.

Немного об уровнях

Если говорить в общем, то наука насчитывает 8 таких уровней. Но по какому же принципу происходит деление? Тут все просто: каждый последующий уровень имеет в своем составе все предыдущие. То есть он больше и существеннее, объемнее и полнее.

Уровень первый - молекулярный

Подробно данный уровень изучает молекулярная биология. О чем же тут идет речь? Каково строение белков, какие функции они выполняют, что такое нуклеиновые кислоты и их работа в генетике, синтез белка, РНК и ДНК - всеми этими процессами и нагружен молекулярный уровень. Именно тут начинаются важнейшие процессы жизнедеятельности всех организмов: обмен веществ, выработка энергии, необходимой для существования, и т. д. Ученые утверждают, что данный уровень сложно назвать живым, он, скорее, считается химическим.

Уровень второй - клеточный

Чем же интересен клеточный уровень организации живой природы? Он следует за молекулярным и, как становится понятно уже из названия, занимается клетками. Биологию этих частичек изучает такая наука, как цитология. Сама по себе клетка - это мельчайшая неделимая частица в организме человека. Тут рассматриваются все процессы, которые связаны непосредственно с жизнедеятельностью клетки.

Уровень третий - тканевый

Специалисты данный уровень называют еще и многоклеточным. И это неудивительно. Ведь, по сути, ткань - это совокупность клеток, которые имеют почти одинаковое строение и схожие функции. Если же говорить о тех науках, которые изучают этот уровень, то тут речь идет о все той же гистологии, а также гистохимии.

Уровень четвертый - органный

Рассматривая уровни организации живой природы, нужно также рассказать и об органном. Чем же он особенен? Так, из тканей формируются органы у многоклеточных организмов и органеллы - у одноклеточных. Науки, которые занимаются этими вопросами, - анатомия, эмбриология, физиология, ботаника и зоология.

Нужно также отметить, что, изучая уровни организации живой природы, специалисты иногда объединяют в одну главу тканевый и организменный. Ведь они весьма тесно связаны друг с другом. В таком случае речь идет об органотканевом уровне.

Пятый уровень - организменный

Следующий уровень носит название в науке «организменный». Чем же он отличается от предыдущих? Помимо того что он включает в свой состав предыдущие уровни организации живой природы, так еще тут происходит деление на царства - животных, растений, а также грибов. Занимается он следующими процессами:

  • Питание.
  • Размножение.
  • Обмен веществ (как и на клеточном уровне).
  • Взаимодействие не только между организмами, но и с окружающей средой.

На самом деле функций еще очень и очень много. Этим разделом занимаются такие науки, как генетика, физиология, анатомия, морфология.

Шестой уровень - популяционно-видовой

Тут также все просто. Если некоторые организмы имеют морфологическую схожесть, то есть они примерно одинаково устроены и имеют схожий генотип, ученые их объединяют в один вид или же популяцию. Главные процессы, которые тут происходят, - это макроэволюция (то есть изменение организма под воздействием окружающей среды), а также взаимодействие между собой (это может быть как борьба за выживание, так и размножение). Изучением этих процессов занимается экология и генетика.

Седьмой уровень - биогеоценотический

Название трудновыговариваемое, но вполне простое. Происходит от слова биогеоценоз. Тут уже рассматриваются множественные процессы, в которых происходит взаимодействие организмов. Речь идет и о пищевых цепочках, о конкуренции и размножении, о взаимовлиянии организмов и окружающей среды друг на друга. Данными вопросами занимается такая наука, как экология.

Последний, восьмой уровень - биосферный

Тут уже биология призвана решать все глобальные проблемы. Ведь по сути биосфера - это огромнейшая экосистема, где происходит круговорот химических элементов и веществ, процессы превращения энергии для обеспечения жизнедеятельности всего живого на земле.

Простые выводы

Рассмотрев все уровни структурной организации живой природы, а их, как стало понятно, 8, можно представить себе картину всего живого на земле. Ведь только структурировав свои знания, можно основательно уяснить суть вышеописанного.

Организменный

Либо особь, либо организм

Происходят процессы дифференцировки

Популяционно-видовой

Популяция

Происходят процессы изменения генотипа в оной популяции

Биогеоценотически-биосферный

Биогеоценоз

Происходит круговорот веществ

Молекулярно-генетический

Деятельность - перенос генетической информации внутри клеток

Как легче всего представить уровни организации живой природы? Таблица - вот что отлично иллюстрирует любой материал. Но для облегчения понимания ученые частенько в таблицу выносят всего лишь 4 объединенных уровня, представленных выше.

Для живой природы нашей планеты характерно сложное, иерархическое соотношение уровней организации . Весь органический мир и окружающая среда образует биосферу, которая, в свою очередь состоит из биогеоценозов (экосистем) - территорий с характерными природными условиями и определёнными растительными и животными комплексами (биоценозами). Биоценозы образованы популяциями - группами растительных и животных организмов одного вида, живущими на определённой территории и способнымы к произведению. Популяции состоят из представителей конкретных видов (особей), способных свободно скрещиваться и давать плодовитое потомство. Многоклеточные организмы состоят из органов и тканей, образованных клетками. Одноклеточные организмы и клетки образованы внутриклеточными структурами, которые состоят из молекул.

Исходя из этого, выделяют несколько уровней организации живой материи .

Для каждого уровня организации живых организмов характерны свои закономерности, связанные со своими конкретными принципами организации, особенностями взаимоотношения с другими уровнями.

Общая биология изучает основные закономерности жизненных явлений, которые происходят на различных уровнях организации живого. Рассмотрение организации живой материи начинается из выяснения строения и свойств сложных органических молекул. Клетки многоклеточных организмов входят в состав тканей, две или несколько тканей формируют орган. Многоклеточный организм имеет сложное строение, который состоит из тканей и органов, в то же время есть элементарной единицей биологического вида. Взаимодействуя между собой виды составляют сообщество, или экологическую систему, которая, в свою очередь, является одним из компонентов биосферы.

Каждый уровень организации организмов изучают соответствующие отрасли биологии.

Молекулярный уровень

Замечание 1

Любая живая система, как бы сложно она не была организована,определяется на уровне функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, а так же иных важных органических веществ. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и т. п.

Молекулярная биология, молекулярная генетика, физиология, цитохимия, биохимия, биофизика, определённые разделы вирусологии, микробиологии изучают физико-химические процессы, происходящие в живом организме (синтез, разложение и взаимные преобразования белков, нуклеиновых кислот, полисахариды, липидов и других веществ в клетке; обмен веществ, энергии и информации, которые регулируют эти процессы).

Такие исследования живых систем показали, что они состоят из низко- и высокомолекулярных органических соединений, которые в неживой природе практически невозможно обнаружить. Для живых организмов наиболее характерны такие биополимеры, как белки, нуклеиновые кислоты, полисахариды, липиды (жироподобные соединения) и составляющие их молекул (аминокислоты, нуклеотиды, моносахариды, жирные кислоты). Так же, на этом уровне изучается синтез, распад и взаимные преобразования этих соединений в клетках, обмен веществ, энергии и информации, регуляция данных процессов.

В результате подобных исследований было выяснено, что важнейшая особенность основных путей обмена - действие биологических катализаторов - ферментов (соединений белковой природы), которые строго избирательно влияют на скорость химических реакций. Так же изучено строение некоторых аминокислот, ряда белков и многих простых органических соединений. Установлено, что химическая энергия, которая освобождается в ходе биологического окисления (процессы дыхания, гликолиза), запасается в виде богатых на энергию соединений (в основном - аденозинфосфорные кислоты АТФ, АДФ и др.), а потом используется в процессах, которые требуют поступления энергии (мышечные сокращения, синтез и транспорт веществ). Крупным успехом стало открытие генетического кода. Выяснено, что закодированная в ДНК наследственность через белки-ферменты контролирует как структурные белки, так и все основные свойства клеток и организма в целом.

Исследования на молекулярном уровне требуют выделения и изучения всех видов молекул, входящих в состав клетки, раскрытия их взаимосвязи между собой.

Используемые методы исследования на молекулярном уровне:

  • электрофорез (для разделения макромолекул с использованием их различия в зарядах);
  • ультрацентрифугирование (для разделения макромолекул с использованием их различия в плотности и размерах);
  • хроматография (для разделения макромолекул с использованием их различия в адсорбционных свойствах);
  • рентгеноструктурный анализ (изучают взаимное пространственное расположение атомов в сложных молекулах);
  • радиоизотопы (исследование путей превращения веществ, скорости их синтеза и распада);
  • искусственное моделирование систем из выделенных клеточных элементов (воспроизведение процессов, идущих в клетке - все биохимические процессы в клетке происходят не в однородной смеси веществ, а на определённых клеточных структурах).

Клеточный уровень

На клеточном уровне цитология, гистология, и их отделы (кариология, цито- и гистохимия, цитофизиология, цитогенетика), многие разделы физиологии, микробиологии и вирусологии изучают строение клетки и внутренних клеточных компонентов, а также связи и отношения между клетками в тканях и органах организма. Свободноживущих неклеточных форм жизни не существует.

Клетка - основная самостоятельная функциональная и структурная единица многоклеточного организма. Существуют одноклеточные организмы (водоросли, грибы, простейшие, бактерии). Также клетка есть единицей развития всех живых организмов, которые существуют на Земле. Свойства клетки определяются её компонентами, осуществляющими различные функции.

Благодаря исследованиям на клеточном уровне изучены основные компоненты клетки, строение клеток и тканей, их изменения в процессе развития.

Методы исследования на клеточном уровне:

  • микроскопия (световой микроскоп позволяет видеть объекты до 1 мкм);
  • цветные гистохимические реакции (выявление локализации в клетке различных химических веществ и ферментов);
  • авторадиография (выявление в клетке мест синтеза макромолекул);
  • электронная микроскопия (различение структур вплоть до макромолекул, хотя описание их строения часто затруднительно из-за недостаточной контрастности изображения);
  • центрифугирование (изучение функций внутриклеточных компонентов - их выделяют из разрушенных (гомогенизированных) клеток);
  • культура тканей (исследование свойств клеток);
  • микрохирургия (обмен ядрами между клетками, слияние (гибридизация) клеток.

Тканевый уровень

Ткань есть совокупностью сходных за строением клеток, объединённых исполнением общей функции. Сотни разнообразных клеток входят в составляют тело разнообразных многоклеточных организмов. Разнообразные клетки животных образуют $4$ типа тканей: нервную, соединительную, эпителиальную и мышечную. У растений различают образующие и постоянные ткани. К постоянным тканям относятся покровные, проводящие, механические и основная ткань.

Органный уровень

Определение 2

Органы - это высокодефференциированные части тела, которые размещены в определённом месте и исполняют специальные функции. Это структурно - функциональные объединения нескольких типов тканей. Они образуются в процессе развития из клеток различных тканей.

Группы разных органов коллективно функционируют для исполнения общей для организма функции. У человека есть такие системы органов: пищеварительная, дыхательная, сердечно - сосудистая, нервная, секреторная, выделительная, репродуктивная, Эндокринная, мышечная, скелетная и система покровных тканей. Каждый отдельный орган системы исполняет конкретную функцию, но все вместе работают как одна «команда», обеспечивая максимальную эффективность всей системы. Все системы органов функционируют во взаимосвязи и регулируются нервной и эндокринной системами. Нарушение функционирования любого органа приводит к патологии всей системы и даже организма.

Организменный уровень

Физиология (растений и животных, высшей нервной деятельности), экспериментальная морфология, эндокринология, эмбриология, иммунология, а также ещё рад других биологических отраслей изучают процессы и явления, происходящие в особи, и согласованное функционирование её органов и систем.

На этом уровне для создания общей теории онтогенеза проводятся исследования, направленные на раскрытие причинных механизмов становления биологической организации, её дифференцировки и интеграции, реализации генетической информации в онтогенезе. Также изучаются механизмы работы органов и их систем, их роль в жизнедеятельности организма, взаимные влияния органов, нервную и гуморальную регуляцию их функций, поведение животных, приспособительные изменения и др.

На этом уровне изучаются также механизм работы органов и систем, их роль в жизнедеятельности организма, взаимоотношения органов, поведение организмов, приспособительные изменения.

В данный момент применяются методы исследования:

  • электрофизиологические (состоят в отведении, усилении и регистрации биоэлектрических потенциалов);
  • биохимические (проводится изучение эндокринной регуляции - выделение и очистка гормонов, синтез их аналогов, изучение биосинтеза и механизмов действия гормонов);
  • кибернетические (исследование ВНД животных и человека методом моделирования);
  • экспериментальные (выработка условных рефлексов, постановка задач).

Популяционно - видовой уровень

Определение 3

Определённые отрасли биологии (морфология, физиология, генетика, экология) изучают элементарную единицу эволюционного процесса - популяцию - совокупность особей одного вида, населяющих определённую территорию, более или менее изолированную от соседних групп.

Изучение состава и динамики популяции неразрывно связано с молекулярным, клеточным и организменным уровнями.

Методами исследования являются методы тех наук, которые изучают конкретно поставленные на этом уровне вопросы:

  • генетические методы - характер распределения наследственных особенностей в популяциях;
  • морфологические
  • физиологические
  • экологические.

Популяция и вид как целое могут служить объектами исследования самых разных биологических отраслей.

Биогеоценотический, или биосферный, уровень

Определение 4

Биогеоценология, экология, биогеохимия и другие отрасли биологии изучают процессы, происходящие в биогеоценозах (экосистемах) - элементарных структурных и функциональных единицах биосферы.

На этом уровне ведутся комплексные исследования, охватывающие взаимоотношения биотических и абиотических компонентов, которые входят в состав биогеоценоза; изучается движение живого вещества в биосфере, пути и закономерности протекания энергетических кругооборотов. Такой подход даёт возможность предвидеть последствия хозяйственной деятельности человека и в форме международной программы «Человек и биосфера» координировать усилия биологов многих стран.

Важное практическое значение имеет изучение биологической продуктивности биогеоценозов (утилизации энергии солнечной радиации путём фотосинтеза и использования гетеротрофными организмами энергии, запасённой автотрофами).

Замечание 2

Необходимость детального изучения биосферного уровня организации живого обусловливается тем, что биогеоценозы - среда, в которой протекают любые жизненные процессы на нашей планете.

Лекция 1. Химический состав клеток. Вода, соли

Общая биология (греч. bios – жизнь, logos – наука ) – наука, изучающая общие закономерности строения, обмена веществ, размножения и развития живых организмов, законы наследственности и изменчивости, многообразие живых организмов и закономерности их совместной эволюции и существования в сообществах.

Уровни организации жизни на Земле.

Жизнь изучается на различных уровнях, самый простой из которых – молекулярный . На этом уровне изучаются неорганические и органические молекулы, входящие в состав живых организмов – их строение и функции в живом организме.

На клеточном уровне изучается строение клеток, строение и функции клеточных органоидов. Каждая клетка проявляет все свойства живого – обмен веществ, раздражимость, развитие и размножение.

У многоклеточных организмов клетки специализируются, начинают гораздо более эффективно выполнять различные функции, появляется тканевый уровень.

Дальнейшее усложнение организмов связано с появлением органного уровня. Орган выполняет более конкретную функцию и еще более эффективно, чем просто ткань. Обычно орган содержит все ткани, но в связи с выполняемыми функциями в нем преобладает одна или две ткани, например, в сердце преобладает мышечная ткань, в щитовидной железе – железистая.

Органы приспосабливаются к совместной работе, такие совместно выполняющие определенные функции органы образуют системный уровень – за пищеварение отвечает целый ряд органов, образующих пищеварительную систему.

Таким образом, большинство многоклеточных организмов включают в себя все предыдущие уровни, которые формируют организменный уровень. Правда существуют и одноклеточные организмы.

Для существования во времени необходимо воспроизведение себе подобных, и группы живых организмов образуют виды, состоящие из популяций – это уже популяционно -видовой уровень.

Но виды существуют не изолированно, а в природном сообществе, взаимодействуют с другими видами живых организмов и приспосабливаются к факторам неживой природы, формируется биогеоценотический уровень.

Самый сложный уровень жизни на Земле – биосферный , это земная оболочка, заселенная живыми организмами.

Свойства живых организмов .

1. Отличительным свойством живых организмов от неживой природы является в первую очередь обмен веществ . Внешними проявлениями этого процесса является потребление и выделение организмом веществ и энергии. Вещества, поглощенные организмом, используются как строительный материал в реакциях пластического обмена и как источник энергии в реакциях энергетического обмена. И если горящая свеча тоже потребляет кислород и выделяет углекислый газ, то уж пластического обмена при этом не происходит.

2. Важнейшее свойство живых организмов – раздражимость . В ответ на внешнее воздействие происходит возбуждение и ответная реакция на раздражитель, позволяющая приспособиться к изменившимся условиям внешней среды.

3. Движение . У растений движение проявляется в форме тропизмов , ростовых движений, у животных без нервной системы – таксисы , у многоклеточных животных с нервной системой – рефлексы . Кроме того, движение проявляется в движении внутренних сред организма, движении цитоплазмы и органоидов, даже в движении молекул.

4. Рост организмов, который осуществляется за счет образования новых клеток и внеклеточных структур.

5. Развитие – неотъемлемое свойство живых организмов, в результате которого происходит постепенное усложнение организмов, заканчивается развитие старением организма и его смертью.

6. Размножение – свойство живых организмов, благодаря которому виды существуют не только в пространстве, но и во времени. Известно два основных типа размножения – бесполое и половое. При бесполом размножении организм наследует признаки одного организма и не происходит слияния генетического материала, при половом – новый организм образуется всегда после слияния генетического материала и всегда отличается по набору генов от родительских организмов.

7, 8. Для живых организмов характерна высокая степень организации и адаптированность , которая проявляется в сложном строении биологических молекул, органоидов, клеток, органов, их специализации к выполнению определенных функций. В результате естественного отбора организмы удивительным образом адаптировались к конкретным условиям обитания. Эта адаптация началась с эволюции на уровне молекул, затем на уровне органоидов клетки – на клеточном уровне, затем на уровне многоклеточного организма.

Многообразие жизни.

Цитология. Изучением клетки занимается цитология (от греч. цитос – клетка и логос – наука). Изучается строение клеток, строение и функции клеточных органоидов, процессы жизнедеятельности, протекающие в клетке. Каждая клетка проявляет все свойства живого – обмен веществ, раздражимость, развитие и размножение, является элементарной (наименьшей) единицей строения. Изучение клетки логично начать с изучения химического состава клетки.

Химический состав клеток.

Все клетки, независимо от уровня организации, сходны по химическому составу. В живых организмах обнаружено 86 химических элементов периодической системы Д.И.Менделеева. Для 25 элементов известны функции, которые они выполняют в клетке. Эти элементы называются биогенными . По количественному содержанию в живом веществе элементы делятся на три категории:

Макроэлементы , элементы, концентрация которых превышает 0,001%. Они составляют основную массу живого вещества клетки (около 99%). Макроэлементы делят на элементы 1 и 2 группы. Элементы 1-ой группы – C, N, H, O (на их долю приходится 98% от всех элементов). Элементы 2-ой группы – K, Na, Ca, Mg, S, P, Cl, Fe (1,9%).

Микроэлементы (Zn, Mn, Cu, Co, Mo, и многие другие), доля которых составляет от 0,001% до 0,000001%. Микроэлементы входят в состав биологически активных веществ – ферментов, витаминов и гормонов.

Ультрамикроэлементы (Hg, Au, U, Ra и др.), концентрация которых не превышает 0,000001%. Роль большинства элементов этой группы до сих пор не выяснена.

Макро- и микроэлементы присутствуют в живой материи в виде разнообразных химических соединений, которые подразделяются на неорганические и органические вещества.

К неорганическим веществам относятся: вода и минеральные вещества. К органическим веществам относятся: белки, жиры, углеводы, нуклеиновые кислоты, АТФ и другие низкомолекулярные органические вещества. Процентное соотношение указано в таблице 1.